Путенихин П. В.
30.06.2016 г.

  На главную раздела "Научные работы"


          Процессы, происходящие сразу после коллапса


          Очевидно, что у сверхмассивной черной дыры разницу между сингулярностью и «атомным ядром» по внешним проявлениям «распознать» невозможно в принципе. Что сингулярность, что плотно сжатое нейтронное атомное ядро – всё это скрыто за горизонтом и что там находится на самом деле, не видно. Но для черных дыр начального, минимального размера разница может оказаться заметной. Как известно, согласно пределу Оппенгеймера-Волкова такой предельный размер черной дыры существует. Это такая максимальная масса нейтронной звезды, при которой давление вырожденного нейтронного газа ещё может компенсировать силы гравитации, не давая звезде коллапсировать в чёрную дыру. Следовательно, для черной дыры такая масса, наоборот, является минимальной:

          «Одновременно предел Оппенгеймера – Волкова является нижним пределом массы чёрных дыр, образующихся в ходе эволюции звёзд» [26].

          По современным данным нижний предел массы черной дыры лежит в пределах 2,5—3 солнечных масс, а из известных черных дыр самая маломассивная имеет массу около 3,8 солнечной массы. Давайте рассмотрим такую черную дыру с предельно малой массой в 2,5 солнечных. Интересует, могут ли нейтроны с такой общей массой «поместиться» в пределах горизонта черной дыры. Если это невозможно, то, следовательно, у сингулярности есть веские основания. Если же общий объём нейтронов окажется меньше объёма сферы с гравитационным радиусом, то принципиальных оснований привлекать сингулярность не будет. Нейтронная звезда просто увеличила свой гравитационный радиус, радиус горизонта за пределы своей физической поверхности. Нет никакого смысла утверждать, что нейтронное вещество стало сжиматься к центру, «падать на сингулярность». Даже при дальнейшем неограниченном росте массы звезды нет веских оснований «давать» нейтронам такую способность уплотнения до бесконечности. Горизонт прячет от внешнего наблюдателя тело звезды и представления o сингулярности с бесконечно малым, даже нулевым радиусом выглядит как мистический домысел.

          Вычислим объём выбранной предельной нейтронной звезды на грани её коллапса, перехода в состояние черной дыры, исходя из следующих приблизительных данных:

Пример изображения

          Итак, поскольку нейтронная звезда превратилась в черную дыру, её поверхность теперь находится под горизонтом. Гравитационный радиус в этом случае, по крайней мере, не меньше радиуса нейтронного шара. Посмотрим, как соотносятся объем образовавшейся черной дыры и объем всех нейтронов, образовавших её при коллапсе исходной нейтронной звезды. Массу такой черной дыры возьмем равной минимально возможной критической массе в 2,5Мс. Для расчетов берём именно минимальную черную дыру, поскольку очевидно, что внутри сверхмассивной черной дыры ядро, что называется, «с головой» поместится под горизонтом:

Пример изображения

          Поскольку произошёл коллапс, понятно, что радиус шара вещества звезды должен стать меньше или равным её гравитационному радиусу, который равен:

Пример изображения

          Соответственно, объём VЧД под горизонтом возникшей при этом черной дыры равен:

Пример изображения

          Количество нейтронов, имеющих такую же суммарную массу, равно:

Пример изображения

          Объём одного нейтрона без сжатия равен:

Пример изображения

          Должен отметить, что сведений о радиусе нейтрона в свободном доступе немного. Поэтому используем те данные, которые удалось найти [6, 10, 17]. Таким образом, максимальный объём, который займут эти Nn нейтронов, составит:

Пример изображения

          Однако, этот объём не учитывает плотности упаковки сферических объектов. Известно, что при наиболее плотной упаковке шаров, они занимают в ней около 74% [34], следовательно, указанное число нейтронов займут несколько больший объем:

Пример изображения

          Это весьма примечательный результат. Как видим, даже несжатые, свободно упакованные нейтроны, имеющие такую же массу, как и черная дыра, свободно помещаются под её горизонтом:

Пример изображения

          Более того, это удивительный и совершенно неожиданный результат: такое невероятное совпадение объёмов – с точностью почти в 10 процентов! Пришлось несколько раз повторить расчеты, чтобы исключить вычислительные ошибки. Для радиусов нейтронной звезды и её гравитационного радиуса это совпадение ещё лучше – около 4 процентов! Такое, видимо, не случайное совпадение позволяет предположить, что предел Оппенгеймера-Волкова имеет вполне конкретное точное числовое значение. Для его определения используем полученные выше уравнения. В момент коллапса объём черной дыры равен:

Пример изображения

          Объём исходной нейтронной звезды в этот же момент равен:

Пример изображения

          В момент «ухода» поверхности нейтронной звезды под горизонт черной дыр объемы их, очевидно, равны. Совпадение объёмов и радиусов коллапсирующей нейтронной звезды и её гравитационного радиуса происходит при её массе, которую можно найти из этого равенства:

Пример изображения

          После преобразований получаем:

Пример изображения

          Подставляем значения величин и вычисляем:

Пример изображения
Пример изображения


          Отношение массы черной дыры к массе Солнца:

Пример изображения

          Таким образом, предел Оппенгеймера-Волкова равен не диапазону, а конкретной величине -  2,34Мс. При такой величине массы нейтронной звезды происходит коллапс.

          В свою очередь, всё это означает, что представления о сингулярности, как и предполагалось, чрезмерны, плохо обоснованы. Нейтроны при коллапсе нейтронной звезды в черную дыру лишь ненамного плотнее «смыкают ряды». При этом не достигается даже плотность атомного ядра. Нужна ли в таком случае черной дыре сингулярность?

          Вычислим это соотношение для ядерной плотности. Как известно, сила гравитации на много порядков слабее сильного ядерного взаимодействия. Посмотрим, каковы будут силы, сжимающие звезду, силы, притягивающие нейтроны на её поверхности к центру звезды, когда радиус нейтронной звезды приблизится к её гравитационному радиусу. Мы определили, что масса черной дыры равна 5х1030 кг. Нейтрон на поверхности звезды удалён от её центра на величину гравитационного радиуса, то есть, на rg=7`385 метров. Следовательно, сила, с какой звезда гравитационно притягивает нейтрон на своей поверхности, равна:

Пример изображения

          Нейтрон лежит на поверхности и прижимается к ней, к следующему слою нейтронов. Два нейтрона находятся друг от друга на расстоянии не ближе, чем расстояние сильного взаимодействия между нуклонами в атомном ядре rсв~10-15 м. Следовательно, сила их притяжения – условная «гравитационная сила сильного взаимодействия» Fгсв равна:

Пример изображения

          Разумеется, это несколько условная сила гравитационного притяжения. Это сила, с которой нуклоны могли бы гравитационно притягиваться. Ядерные силы сильного взаимодействия сильнее гравитационной в 1038 раз. То есть, нуклоны в ядре должны притягиваться с большей силой, чем гравитационное притяжение, силой ядерного сильного взаимодействия Fсв:

Пример изображения

          Это та сила Fсв, с которой нейтрон на поверхности звезды мог бы притягиваться к следующему слою, если бы входил в состав атомного ядра. Выходит, что силы гравитационного притяжения нейтронов звездой Fg на много порядков не хватает даже для того, чтобы они вступили в сильное ядерное взаимодействие, то есть, образовали бы в действительности огромное атомное ядро. «Перепрыгивание» в сингулярное падение, минуя состояния атомного ядра, выглядит как довольно-таки фантастический вариант. Но это «перепрыгивание», как утверждает гипотеза сингулярности, происходит чуть ли не одномоментно. Только что, до коллапса нейтроны на поверхности притягивались к центру звезды с относительно малой силой гравитации, и тут же, в одно мгновение притяжение возросло не просто в 1038 раз, а многократно больше. Похоже на цирковой фокус, когда из пустой коробки вынимают кролика.

          Далее, как выше было показано в обзоре, сжатие до сингулярного состояния следует лишь из единственного, не очень убедительного постулата, что «жесткие» нейтроны с некоторым определённым радиусом превратились в пылинки с бесконечно малым объёмом и массой нейтрона, но с некоторой упругой сферической оболочкой, оказывающей давление при сжатии, - вырожденный фермионный газ.

          Представьте себе два обычных воздушных шара диаметром по 30 сантиметров, которые прижаты друг к другу с силой в 1 тонну, аналогом силы ядерного взаимодействия. Что в этом случае считать расстоянием между шарами? Разумеется, эти шары можно сжать до размеров горошины. Но изначально расстояние между их центрами при таком взаимодействии, очевидно, будет равно нулю. Куда и как приложить силу в одну тонну к этим шарам, чтобы разъединить их? Невозможно представить, чтобы такие эфемерные объекты могли притягиваться со столь непропорциональной силой.

          Нуклоны могут притягиваться с силой в 1038 раз превосходящей силу гравитации. Для «газовой модели» расстояние между их центрами должно быть, как и в случае с шарами, близко к нулю. Но это явно противоречит экспериментам, поскольку атомные ядра разных веществ имеют разные и достаточно большие размеры.

          Выглядит довольно условной такая гипотеза о вырожденном фермионном газе, которая явно сводится к модели, в которой каждый элемент газа – молекула или пылинка – имеют массу, сосредоточенную «массивном ядре» нулевого объёма, и окружены упругой сферой, которая, собственно, и создаёт давление при сжатии.

          Сингулярность, возникающая на таком зыбком фундаменте, не должна рассматриваться как физическая реальность. Так как же быть в таком случае с предсказаниями сингулярности общей теорией относительности? Можно поступить просто. Во-первых, это предсказание – результат не очень хорошо обоснованной экстраполяции движения. Во-вторых, может быть, не следует требовать от геометрической теории – геометродинамики Эйнштейна, общей теории относительности, теории гравитации, которая рассматривает звёзды, галактики и даже их скопления как пыль, описания «химического» состава или свойств материала нейтронов и его поведения при сверхплотном сжатии?

          Если исходить из этих предположений, то можно прийти к выводу, что внутри черной дыры плотность вещества не является бесконечно большой, поскольку его объём не стремится к нулю. Напротив, давления плотно сжатого вещества, а это уже, очевидно, не вырожденный фермионный газ, вполне достаточно, чтобы удержать его от дальнейшего сжатия. То есть, можно использовать обычные физические законы для описания этого вещества. С другой стороны, отвергается главная «страшилка» теории относительности – обрыв геодезических, мировых линий. Проблема предсказания будущего и причинности внутри черной дыры связана лишь с недоступностью этой области для внешнего наблюдателя. Но в жизни мы по этому поводу не очень-то сокрушаемся. Если мы потеряли связи с нашими знакомыми, это не значит, что они уехали в Чернодырск (ироничное – от черной дыры – название города). Или горизонт Вселенной, принципиально недоступный для наблюдений? К тому же обнаружена гипотетическая возможность проникнуть под горизонт сверхмассивной черной дыры и затем вернуться во внешнюю область [30].

          Но тогда как поступить с сингулярностью Большого Взрыва? Ведь общепризнанно и с этим согласился даже Ватикан, что наша Реальность, Бытие возникли в результате взрыва сингулярности. В начале этой статьи я привёл трактовку этого события как рождение Вселенной из «Ничто, Нигде и Никогда». И хотя многие космологи и физики по-прежнему вслух говорят о сингулярности, но тайком, негласно, каждый раз, тем не менее, протаскивают в свои теории нечто, существовавшее до сингулярности: то ли инфлатоны, то ли скалярные поля, то ли квантовые флуктуации чего-то квантового. И это не удивительно, логика-то противится: «Из ничего может возникнуть только ничто».

          Вместе с тем, более реалистичной выглядит возникновение Вселенной из классической вечной и бесконечной Материи в результате изменения её состояния, как торжество материалистической философии. В процессе, напоминающем, например, конденсацию перегретого пара, и который я условно называю веществолизацией материи, Материя приняла одну из бесчисленных своих форм – вещественную. Как произошел этот переход, сейчас не особо важно. Может быть, была всё-таки точка начала веществолизации-конденсации. Тогда по всему объёму Вселенной пробежала своеобразная волна, как при обычном взрыве. Может быть, Материя, обладающая бесчисленными неизвестными нам свойствами, перешла в новое состояние одномоментно, как это и выглядит при конденсации пара, замерзании переохлажденной воды или взрыве перегретой жидкости [27]. В конце этого, видимо, крайне быстрого процесса образовалась та самая ранняя сильно разогретая Вселенная. В дальнейшем все процессы можно рассматривать в рамках существующих представлений: образование частиц и всего остального. Граница Вселенной в этом случае ничем не ограничена и может простираться до бесконечности, как бесконечна сама Материя. Проблема изотропии также не возникает: состояние материи перед её веществолизацией полностью однородно, изотропно, поэтому нет никаких оснований вещественной форме иметь разные свойства на бесконечных удалениях друг от друга. Это же объясняет и плоскостность Вселенной: бесконечно протяженное пространство по определению – плоское, радиус кривизны равен бесконечности. Главное, что из теории изгоняется мистика сотворения.

          Иное объяснение получает и темная энергия. Поскольку процесс веществолизации может быть вечным, то в отдельных точках Вселенной равномерно в пространстве, появляются дополнительные «атомы пространства» - элементы вещественного физического вакуума [29]. Гравитационно связанные области не расширяются, потому что обилие вещества в них, видимо, препятствуют образованию новых «атомов пространства». Трудно пробиться через толпу. Также это объясняет и возможность сверхсветового разбегания галактик. Они не движутся под действием сил, они не движутся по инерции – таких скоростей не допускает теория относительности. Но расстояние между ними увеличивается – за счет появления новых «атомов пространства».

          Загадочная темная материя тоже может иметь под собой материальную основу. Неизвестные ныне формы проявления Материи могут обладать гравитационными свойствами. Впрочем, феномен тёмной материи сам по себе крайне противоречив и непоследователен [28].

В начало                               Продолжение

 

Добавить комментарий Сообщение модератору


Защитный код
Обновить