Путенихин П.В.
04.02.2016 г.

  На главную раздела "Научные работы"


          Как верно указано в работе [3], нет никакой разницы между сплошным диском и диском со спицами. Лоренцеву сокращению подвержены все элементы, удалённые от центра на одинаковое расстояние. То есть, в этом случае «тонкий слой» представляет собой последовательность из «долек» спиц и пустого пространства между ними. Здесь может возникнуть недоуменное возражение: как же так, почему это каждая «долька» спицы сжимается вдоль окружности? Ведь у них рядом пустое пространство! Да, пустое. Но лоренцеву сокращению подвержены все без исключения элементы, это не реальное физическое сжатие, это сжатие, видимое внешнему наблюдателю. Как правило, при описании лоренцева сокращения всегда подчеркивается: объект с точки зрения внешнего наблюдателя уменьшил свои размеры, хотя с точки зрения самого объекта с ним ничего не произошло.

          Для пояснения этого тангенциального сжатия, утончения спиц представим себе движущуюся платформу, на которой с интервалом уложены, например, кирпичи. Внешнему наблюдателю будет казаться, что платформа сократилась. А что будет с интервалами между кирпичами? Кирпичи, разумеется, сократятся, но в случае неизменности интервала между ними, они просто вытолкнут друг друга с платформы. Однако, на самом деле кирпичи и интервалы между ними сокращаются как один единый объект. Любой наблюдатель, движущийся мимо платформы, будет видеть её уменьшенную длину, в зависимости от относительной скорости, и уменьшенную длину объекта «кирпичи с интервалами». С самой же платформой, кирпичами и интервалами между ними, как известно, ничего не произойдёт.

          Так и в случае с колесом со спицами. Каждый отдельный радиальный слой колеса - обод будет представлять собой «слоёный пирог», состоящий из последовательных кусочков спиц и пространства между ними. Сокращаясь по длине, такой «слоёный» обод будет одновременно уменьшать свой радиус кривизны. В этом смысле полезно представить себе, что колесо сначала раскручено, затем замедлено до остановки. Что с ним будет? Оно вернётся в исходное состояние. Уменьшение его размеров никак не связано с его физической деформацией, это размеры, видимые внешнему, неподвижному наблюдателю. С самим колесом при этом ничего не происходит.

          Отсюда, кстати, непосредственно и следует, что колесо может быть абсолютно твердым. Никаких усилий деформации к нему не прикладывается, изменение его диаметра не требует непосредственного физического сжатия материала колеса. Можно колесо раскручивать, затем замедлять сколько угодно раз: для наблюдателя колесо будет уменьшать свои размеры и вновь их восстанавливать. Но при одном условии: тангенциальная скорость внешнего обода колеса не должна превышать таинственной величины - 0,7 скорости света.

          Очевидно, что при достижении этой скорости внешним ободом колеса, скорости всех нижележащих будут заведомо меньше. Следовательно, «волна» перекрытия начнётся с внешней части и будет постепенно перемещаться внутрь колеса, к его оси. При этом если внешний обод будет раскручен до скорости света, перекрытие слоёв будет только до слоя, имеющего 0,7 исходного радиуса колеса. Все более близкие к оси слои перекрывать друг друга не будут. Понятно, что это гипотетическая модель, поскольку пока неясно, что будет происходить со слоями, находящимися от оси дальше, чем 0,7 исходного радиуса. Напомним точное значение этой величины: √2/2.

          На диаграмме показан процесс сокращения радиусов слоёв и точка начала их пересечения:

Пример изображения
Рис.3 Степени сжатия радиусов ободов в зависимости от их удалённости от центра
и тангенциальной скорости внешнего обода.

          При увеличении тангенциальной скорости внешнего края диска, его слои – ободы уменьшают собственные радиусы в разной степени. Сильнее всего уменьшается радиус внешнего края – вплоть до нуля. Видим, что обод, радиус которого равен десятой части от радиуса внешнего края диска, практически не изменяет своего радиуса. Это значит, что при сильной раскрутке внешний обод сократится до радиуса меньшего, чем внутренний, но как это будет выглядеть в реальности, пока неясно. Пока только очевидно, что деформация наступает лишь при скорости внешнего обода, превышающей √2/2 скорости света (ок. 0,71с). До этой скорости все ободы сжимаются, не пересекая друг друга, без деформации плоскости диска, внешний радиус которого при этом уменьшится до 0,7 от исходного значения. Чтобы наглядно показать эту точку, на диаграмме приведены два смежных внешних слоя обода, имеющие почти одинаковые радиусы. Это первые «кандидаты» на взаимное пересечение при раскручивании.

          Если на диск нанести равномерно концентрические окружности, через равные интервалы, то в процессе его раскручивания для внешнего наблюдателя эти окружности будут располагаться с интервалами, равномерно уменьшающимися от центра (практически исходная величина интервала) к периферии (уменьшающийся вплоть до нуля).

          Для того чтобы выяснить, что произойдёт с колесом после превышения внешним ободом скорости 0,7 от скорости света, изменим форму колеса так, чтобы слои не мешали друг другу. Сдвинем слои колеса вдоль оси, превратив колесо в тонкостенный конус, воронку. Теперь при сжатии каждого слоя под ним нет других слоёв, и ничто не мешает ему сжиматься сколько угодно. Начнём раскручивать конус из состояния покоя до скорости 0,7 от скорости света и затем до скорости света, после чего уменьшим скорость в обратной последовательности. Изобразим этот процесс в виде анимации:

Пример изображения
Рис.4 Лоренцева деформация конуса при раскручивании. Слева вид вдоль оси конуса - воронки,
справа – вид сбоку, перпендикулярно к оси. Красной тонкой линией на конусе показан его контур.

          На рисунке конус (воронка) показан в двух видах: вдоль оси, как всегда изображается парадокс колеса, и перпендикулярно к оси, вид сбоку, на котором виден «профиль» конуса. На виде сбоку мы отчетливо видим поведение каждого слоя-обода конуса, бывшего колеса. Каждый из этих слоёв изображен цветной линией. Эти линии повторяют соответствующие окружности, ободы, для которых построен график на предыдущем рисунке. Это позволяет увидеть каждый обод независимо от других и то, как внешний обод уменьшает свой радиус сильнее, чем внутренние.

          Следует особо отметить следующие очевидные обстоятельства. Согласно теории относительности деформации диска или показанного конуса как таковой нет. Все изменения в его форме – это видимость для внешнего наблюдателя, с самим диском и конусом при этом ничего не происходит. Следовательно, он вполне может быть из абсолютно твердого материала. Изделия из такого материала не сжимаются, не растягиваются, не изгибаются и не скручиваются – они не подвержены никакой геометрической деформации. Поэтому видимость деформации вполне допускает и раскручивание этого диска до световой скорости. Внешний наблюдатель будет видеть, как показано на анимации, вполне логичную, хотя и довольно странную картину. Внешний обод конуса уменьшается до скорости 0,7с, после чего продолжает сжиматься дальше. При этом внутренний обод, который имел меньший радиус, оказывается с внешней стороны. Однако, это вполне очевидное явление. По раскрашенным ободам на анимации видно, как внешние ободы приближаются к центру диска, превращая конус в своеобразный замкнутый сосуд, амфору. Но нужно понимать, что при этом собственно конус остаётся таким, как и был изначально. Если уменьшить скорость его вращения, то все слои вернутся на свои места и амфора для неподвижного наблюдателя вновь превратится в конус. Это кажущееся перемещение слоёв, ободов вследствие сжатия к центру диска с точки зрения внешнего наблюдателя никак не связано с реальной геометрической деформацией самого диска. Потому-то и нет никаких физических препятствий для того, чтобы конус был изготовлен из абсолютно твердого материала.

          Но это относится к конусу. А как поведёт себя плоское колесо, в котором все слои находятся всё-таки друг над другом? В этом случае неподвижный наблюдатель увидит весьма странную картину. После того как внешний обод диска уменьшится на скорости 0,7с, он сделает попытку дальнейшего сжатия. При этом внутренний обод, который имел меньший радиус, будет сопротивляться этому. Здесь мы напомним очевидное условие - при любой скорости диск должен оставаться плоским.

          При всей странности картины можно достаточно легко догадаться о том, что произойдёт дальше. Нужно просто вспомнить рассмотренную выше картину с тонкостенным колесом, насаженным на неподвижную ось. Отличие лишь в том, что в рассмотренном случае неподвижная ось не испытывает лоренцева сокращения. Здесь же слои, он нуля до 0,7 от радиуса колеса, сами испытали сжатие и несколько уменьшили свои размеры. Не смотря на это внешние слои их всё равно «догнали». Теперь лоренцева сжатия внутренних слоёв недостаточно, они не дают внешним продолжить собственное сжатие. Как варианты мы можем выделить три сценария дальнейшего развития событий, не принимая во внимание действие центробежных сил и тот факт, что для такой раскрутки потребуется бесконечно мощный двигатель.

          Для обычного материала при взаимодействии слоёв-ободов внутренние слои испытывают деформацию сжатия, а внешние – растяжения. Следовательно, более вероятен разрыв внешних ободов, чем упругое уменьшение объёма внутренних. Это очевидно, поскольку материал их один и тот же.

Пример изображения
Рис.5 Лоренцева деформация диска из обычного твердого материала.

          Здесь и на последующих анимация раскраска полос сделана наподобие «тельняшки» - более светлые цвета чередуются с более тёмными. В этом случае при сжатии диска на его разрезе лучше видно, что они не пересекают друг друга, а как бы складываются в виде «гармошки». На анимации сжатия обычного твердого (хрупкого) диска в красный цвет перекрашиваются слои (ободы), которые приходят в тесное соприкосновение, с силой давят друг на друга. В этом случае их материал испытывает как усилие на сжатие (внутренние слои), так и усилие на растяжение (внешние слои). При некоторых усилиях внешние слои, что более вероятно, просто будут разорваны, и разлетятся в разные стороны. Как видно на анимации, условия для разрыва наступают после достижения предельной скорости 0,7с.

          Для абсолютно эластичного материала картина немного иная. Разрыв слоёв невозможен, но возможно их бесконечное сжатие. Следовательно, при скорости внешнего обода, близкой к скорости света, для внешнего наблюдателя колесо может превратиться в бесконечно малую точку.

Пример изображения
Рис.6 Лоренцева деформация диска из эластичного материала.

          Это в том случае, если на сжатие будет необходимо меньшее усилие, чем на растяжение. Иначе форма колеса при равенстве этих сил будет оставаться неизменной. После прекращения вращения колесо примет свои первоначальные размеры без каких бы то ни было повреждений. На анимации, как и выше, видно, что слои-ободы складываются в виде «гармошки», не пересекая друг друга. Правда, здесь следовало бы показать утолщение диска в зазоре между внешним ободом и осью. Диск, очевидно, должен при сжатии принять форму бублика. При достижении скорости внешнего обода, равной скорости света, диск сожмётся в точку (вернее, в тонкую трубочку, надетую на ось).

          Для абсолютно твердого материала колеса, который не сжимается, не растягивается и не изгибается, картина также будет отличаться от предыдущих.

Пример изображения
Рис.7 Лоренцева деформация диска из абсолютно твердого материала.
 
          Внешние ободы не могут разорваться, а внутренние – сжаться. Поэтому, разрушения ни тех, ни других не будет, но будет стремительно возрастать сила их давления друг на друга после того, как будет достигнута предельная скорость вращения. За счет каких источников возникает эта сила? Очевидно, что за счет сил, приводящих колесо во вращение. Следовательно, внешний источник должен будет прикладывать всё большее и большее усилие вплоть до бесконечности. Понятно, что это невозможно, и мы приходим к выводу: при достижении внешним ободом абсолютно твердого колеса скорости √2/2 от скорости света дальнейшего увеличения этой скорости не будет. Приводной двигатель словно упрётся в стену. Это примерно то же самое, как бежать, например, за тракторной тележкой, прицепом. Можно бежать с любой скоростью, но при достижении тележки скорость будет сразу же ограничена её скоростью, скоростью трактора.

          Итак, подведём итоги. Как видим, поведение раскручиваемого колеса имеет строго согласованные и непротиворечивые предсказания в специальной теории относительности для всех вариантов парадокса колеса.

          Ошибочным является вариант парадокса Эренфеста – невозможность раскрутить абсолютно твердое тело:
          «Рассуждение Эренфеста показывает невозможность приведения абсолютно твёрдого тела (изначально покоившегося) во вращение» (4).

          Это ошибочные выводы, не соответствующие предсказаниям специальной теории относительности. Кроме того, в работе Эренфеста, которую следует считать первой формулировкой парадокса, нет таких рассуждений. Считается, что само по себе абсолютно твердое тело по определению невозможно в специальной относительности, поскольку оно позволяет производить сверхсветовую передачу сигналов. Поэтому математика СТО к таким телам изначально неприменима. Тем не менее, такое тело, как мы показали, можно раскрутить до скорости более чем в две трети от скорости света. При этом никаких парадоксов СТО не возникает, поскольку для внешнего наблюдателя происходит релятивистское сжатие круга целиком, включая его спицы. Утверждение Эренфеста и других авторов о том, что продольно спицы не сжимаются – ошибочно. Действительно, поскольку ободы движутся без проскальзывания относительно друг друга, мы можем склеить их, рассматривая их как один сплошной диск. Если теперь на таком сплошном диске мы «нарисуем» спицы, то очевидно, они будут уменьшать свою длину, следуя за уменьшением диаметров ободов. Также спицы можно выполнить как рифление на поверхности диска и даже сделав радиальные (или под углом) пропилы внутри него. Получившиеся спицы и пустые интервалы (пространство) между ними движутся как связанные друг с другом части ободов, то есть, являются объектами, которые сокращается как единое целое. И материал спиц, и интервал между ними испытывают тангенциальное лоренцево сокращение в равной мере, что, соответственно, приводит и к такому же их радиальному сокращению.

          Ошибочным является и оригинальный, распространенный в литературе, авторский вариант парадокса Эренфеста – раскручивание обычного тела: радиус колеса одновременно равен исходному и укороченному значению.

          Ошибка заключена в утверждении от имени теории относительности, что радиус (спицы) колеса не испытывает лоренцева сокращения. Но специальная теория относительности не делает такого предсказания. Согласно её предсказаниям спицы испытывают такое же лоренцево сокращение, как и обод колеса. При этом в зависимости от материала колеса его часть, превышающая 0,7 от радиуса при раскручивании обода до световой скорости, будет либо разрушена, разорвана, если материал недостаточно эластичен, либо всё колесо целиком испытает лоренцево сжатие до бесконечно малого радиуса с точки зрения внешнего наблюдателя. Если остановить колесо до его разрушения и до достижения скорости 0,7 от скорости света, то оно примет для внешнего наблюдателя свою исходную форму без каких-либо повреждений. Упругое тело при достижении скорости выше 0,7 от скорости света может испытать некоторые деформации. Например, если в нём были вкрапления из хрупкого материала, то они будут разрушены. После остановки колеса разрушения не будут восстановлены.

          Таким образом, следует признать, что ни одна из рассмотренных формулировок не позволяет говорить о парадоксе. Все виды парадокса колеса, Эренфеста являются мнимыми, псевдо парадоксами. Корректное и последовательное применение математики СТО позволяет для каждой описанной ситуации сделать непротиворечивые предсказания. Под парадоксом мы понимаем правильные предсказания, которые противоречат друг другу, но здесь этого нет.

          После просмотра источников, который нельзя, конечно, назвать исчерпывающим, выяснилось следующее. Изложенное решение парадокса Эренфеста (парадокса колеса) является, видимо, первым с момента его формулировки Эренфестом в 1909 году корректным решением парадокса в рамках специальной теории относительности. Впервые рассмотренное решение обнаружено пару недель назад и 18 октября 2015 года данная статья направлена для публикации на сайте Международной ассоциации ученых, преподавателей и специалистов (Российской Академии Естествознания)  в разделе Заочные электронные конференции  (http://www.rae.ru/).

Литература

1. Зигуненко С.Н., XX век: хроника необъяснимого. Тайны космоса: сенсации наших дней.– М.: Олимп; ООО «Фирма «Издательство ACT», 1998.– 480 с.
2. Кулигин В.А. Неисправленная ошибка Пуанкаре и анализ СТО, [резкая критика специальной теории относительности] URL:     
http://n-t.ru/tp/ov/sa.htm (дата обращения 27.09.2015)
3. Соколовский Ю.И. Теория относительности в элементарном изложении. – М.: Наука, 1964
4. Парадокс Эренфеста, Википедия, URL: https://ru.wikipedia.org/wiki/Парадокс_Эренфеста
5. Путенихин П.В. Мнимые парадоксы СТО. Парадокс транспортера, [Рассмотрен парадокс транспортера специальной теории относительности и его известное решение], URL:     
http://samlib.ru/p/putenihin_p_w/paradox-transp.shtml
6. Путенихин П.В. Мнимые парадоксы СТО. Парадокс Эренфеста, [рассмотрен парадокс колеса или парадокс Эренфеста. В зависимости от материала колеса при раскручивании оно либо разрывается (твердое тело), либо сжимается до нулевых размеров (эластичное тело), либо препятствует раскручиванию быстрее 0.7 скорости света (абсолютно твердое тело)], URL:     
http://samlib.ru/p/putenihin_p_w/paradox-ring.shtml     
http://econf.rae.ru/article/9542      
http://www.sciteclibrary.ru/rus/catalog/pages/15296.html     
http://scorcher.ru/theory_publisher/show_art.php?id=614      
http://vixra.org/abs/1510.0411     
http://gsjournal.net/Science-Journals/%7B$cat_name%7D/View/6249  
7. Реквием по теории?, «Спутник ЮТ», научно-популярный дайджест, #1/2002, URL: http://jtdigest.narod.ru/dig1_02/einstain.htm
8. Энциклопедия для детей. Том 16. Физика. ч.2. Электричество и магнетизм. Термодинамика и квантовая механика. Физика ядра и элементарных частиц / Глав.ред. В.А.Володин. – М.: Аванта+, 2000. – 432 с.: ил.
9. Эренфест П. - Относительность. Кванты. Статистика: Сборник статей. – М.: Наука, 1972, с.38

Иллюстрации и уравнения к статье (зеркала)    
http://samlib.ru/p/putenihin_p_w/
https://cloud.mail.ru/public/8WpP/qeaUMAiGz
https://cloud.mail.ru/public/K5GK/QidmkTF35
https://yadi.sk/d/EZg36rrKmJDwk
https://drive.google.com/folderview?id=0B0uM56-EnG4ZaUFJb0YzY3YtcVU&usp=drive_web


04.11.2015
Путенихин П.В.
Материал поступил в редакцию 20.12.2015
 

Добавить комментарий Сообщение модератору


Защитный код
Обновить