С.И. Доронин
01.07.2016 г.

  На главную раздела "Научные работы"


          1.2 Запутанные состояния


          Одним из самых дерзких вызовов, который бросила квантовая физика своей классической предшественнице, является утверждение о наличии в окружающей нас реальности особого типа состояний с удивительными, прямо-таки «сверхъестественными» свойствами и возможностями. Квантовая теория говорит о том, что в природе существует широкий класс состояний, которые не имеют никакого классического аналога, поэтому они никак не могут быть поняты и описаны в рамках классической физики. Это «магические» состояния, которые выходят за все мыслимые рамки с точки зрения наших привычных представлений о реальности. Они получили название запутанных состояний (entangled states). Учет этих состояний, осознание того факта, что они являются неотъемлемой частью реальности, — все это способно коренным образом изменить наше привычное миропонимание и вывести его на качественно новый уровень. Окружающий мир в свете этого нового физического факта оказывается намного богаче того, что преподносит нам классическая физика. В нем происходят объективные процессы, которые и «не снились» в рамках старых представлений, они выходят за пределы даже самой буйной фантазии, встречающейся в фантастических романах.

          И это не просто теоретический вывод — эти «фантастические» возможности квантовая теория научилась использовать на практике в технических устройствах. Некоторые из них уже вышли из физических лабораторий и находятся на стадии коммерческого производства, например, квантово-криптографические устройства*.
 

          * Стикс Г. Квантовая криптография прошла путь от теоретических исследований и лабораторных опытов до коммерческих изделий // В мире науки (Scientific American). 2005. № 4. Апрель. http://www.sciam.ru/2005/4/innovation.shtml; Красавин В. «Квантовая криптография»: http://www.security.strongdisk.ru/i/42&all=1/.

 
          В частности, фирма «MagiQ» (http://www.magiqtech.com/) реализует квантово-криптографические системы, которые обеспечивают основанную на квантовой запутанности абсолютную защиту связи от подслушивания. Символично название этой фирмы — «MagiQ» образовано от слов «Magic» (магия) и первой буквы выражения «Quantum information processing» (обработка квантовой информации). Существуют уже небольшие сети из этих устройств. Так, полностью функциональная 12-мильная квантово-криптографическая сеть из 10 узлов была развернута в Бостоне в июне 2004 года совместными усилиями Бостонского университета, Гарварда и некоторых коммерческих компаний. В Вене установлена квантово-криптографическая система, связывающая Венский муниципалитет и штаб-квартиру Австрийского банка (на расстоянии 1,45 км).

          Одна из ведущих компаний по производству квантово-криптографических систем «id Quantique»* в апреле 2005 года выпустила на рынок уже второе поколение таких устройств, которые помогают корпорациям и правительственным агентствам защищать их сети передачи данных, используя фундаментальные законы квантовой физики. Компания «id Quantique» — лидер в области детектирования единичных фотонов и связанных лазерных источников.
 


 
          Кратко перечислим основные достижения последних лет в области коммерческого производства и практического применения квантово-криптографических систем*.

          ● id Quantique (Женева) — система посылает квантовые шифровальные ключи (запутанные фотоны) на десятки километров по оптоволокну.

          ● MagiQ Technologies (Нью-Йорк) — система с оптоволокном посылает квантовые шифровальные ключи на расстояние до 100 км. Предлагаются также аппаратные средства и программное обеспечение для интеграции в существующие сети.

          ● NEC (Токио) — в 2004 году удалось передать ключи на рекордные 150 км. Намечено выпустить систему с оптоволокном в начале 2006 года.

          ● QinetiQ (Фарнборо, Англия) — предлагает системы на контрактной основе, которые передают ключи через атмосферу на расстояния до 10 км. Поставила систему фирме BBN Technologies в Кеймбридже, штат Массачусетс.

 
          * Приводятся по указанной выше статье Гэри Стикса.

 
          В квантово-криптографических системах основным рабочим ресурсом являются запутанные состояния фотонов, и их мгновенная нелокальная связь (квантовые корреляции) позволяет обеспечить абсолютную защиту информации от постороннего доступа. Связь между запутанными фотонами не просто «сверхсветовая», а именно бесконечная, мгновенная, но в данном случае она используется не для передачи информации, а для контроля безопасности канала связи — при доступе к передаваемой информации «со стороны» когерентность фотонов (квантовая запутанность) тут же нарушается.

          В разрабатываемых квантовых компьютерах запутанность также является основным рабочим ресурсом. В отличие от обычного компьютера, ячейки памяти которого могут принимать лишь два возможных значения (например, нуль и единица) и содержат классический бит информации, квантовый компьютер использует квантовые биты — кубиты (quantum bits, qubits). За счет суперпозиции состояний кубитов, наличия комплексных амплитуд и фазовых множителей возможности квантовых компьютеров существенно (экспоненциально) превышают возможности обычных. Запутанность между кубитами — это необходимое условие для работы квантового компьютера, это ключевой фактор, отвечающий за квантовый параллелизм и определяющий преимущество квантового компьютера над обычным.

          Еще раз подчеркну, что квантовая запутанность — это не теоретическая абстракция, которую ввели физики-теоретики, а объективный факт окружающей реальности. Это то, что существует в природе независимо от наших представлений, собственно, поэтому она и может быть использована на практике.

          В чем же заключаются удивительные особенности запутанных состояний? Почему они привлекают такое пристальное внимание исследователей? Суть в том, что они в прямом смысле являются запредельными, потусторонними, трансцендентными, как сказали бы философы, по отношению к материальному миру. Их свойства и возможности просто фантастические с точки зрения классической физики и наших привычных представлений о реальности. Поговорим об этом более подробно.

          Квантовая запутанность возникает в системе, состоящей из двух и более взаимодействующих подсистем (или взаимодействовавших ранее, а затем разделенных), и представляет собой суперпозицию макроскопически различимых состояний. В таких системах флуктуации отдельных частей взаимосвязаны, но не посредством обычных классических взаимодействий, ограниченных, например, скоростью света, а посредством нелокальных квантовых корреляций. В этом случае изменение одной части системы в тот же момент времени сказывается на остальных ее частях (даже если они разделены в пространстве, вплоть до бесконечно больших расстояний). И это не просто теория. Как уже говорилось, «магические» свойства запутанных состояний подтверждены многочисленными физическими экспериментами, и именно эти «сверхъестественные» возможности лежат в основе работы квантового компьютера, когда все кубиты благодаря квантовой запутанности могут согласованно и мгновенно изменять свое состояние, даже если мы изменим состояние одного кубита.

          Таким образом, запутанность — это особый тип взаимосвязи между составными частями системы, у которой нет аналога в классической физике. Эта связь противоестественна, немыслима с точки зрения классических представлений о реальности и выглядит магической в прямом смысле этого слова.

          Квантовая запутанность — состояние неразрывной целостности, единства. Обычно дают такое определение: запутанное состояние — это состояние составной системы, которую нельзя разделить на отдельные, полностью самостоятельные и независимые части. Оно является несепарабельным (неразделимым). Запутанность и несепарабельность — тождественные понятия.

          Когда квантовая теория обогатилась пониманием того, что квантовая запутанность — это обычная физическая величина, и с ней можно работать, как с другими физическими величинами, такими как энергия, масса и т. д., то возникла необходимость в ее количественном описании. Запутанные состояния нужно было охарактеризовать по величине (степени) запутанности. Одним из первых такую количественную характеристику, то есть меру запутанности, ввел в 1996 году Чарльз Беннетт (с соавторами)*.

 
          * Bennett C. H., Bernstein H. J., Popescu S. and Schumacher B. Phys. Rev. A 53, 2046 (1996).

 
          В зависимости от величины квантовой запутанности (она изменяется от нуля до единицы) система может состоять из отделимых локальных частей, которые слабо связаны друг с другом. В этом случае мера запутанности близка к нулю. Если же система составляет единое неразделимое целое, то мера запутанности равна единице. Это нелокальное состояние, и тогда в системе нет никаких классических, «видимых» объектов (даже на тонких уровнях реальности).

          Разделить на строго независимые части можно систему, части которой находятся в сепарабельном (незапутанном) состоянии (мера запутанности равна нулю). Такое разделение возможно только в том случае, если части системы никогда не взаимодействовали друг с другом.

          Любой объект, который взаимодействует со своим окружением, находится с ним в запутанном состоянии. Особо подчеркну: речь идет о любых объектах, в том числе макроскопических. Например, взаимодействуя с окружением, мы связаны с ним нелокальными квантовыми корреляциями. Может возникнуть вопрос: почему же тогда мы не чувствуем эти корреляции, почему не ощущаем нашу квантовую запутанность? Но дело в том, что мы прекрасно ее ощущаем, только не выделяем своим вниманием. Более того, у нас есть возможность сознательно и целенаправленно изменять меру запутанности. А это уже настоящая магия, и в дальнейшем нам предстоит поговорить об этом подробнее. Пока лишь отмечу, что существует большое количество самых различных типов взаимодействий макросистем с окружением, много каналов квантовой запутанности с различной мерой несепарабельности. По одним степеням свободы мы, например, локальны (наши тела разделены в пространстве), а по другим (в частности, можно говорить о наших чувствах или мыслях) — нелокальны, несепарабельны.

          Величина запутанности зависит от интенсивности взаимодействия. Так, управляя взаимодействием с окружением, можно манипулировать мерой квантовой запутанности между составными частями системы. Например, замкнутая система может находиться в максимально запутанном состоянии и не будет иметь внутри себя локальных (классических) составных частей (подсистем). Но если она начинает взаимодействовать с окружением, то мера запутанности между ее подсистемами постепенно уменьшается, и они «проявляются» в виде локальных объектов. В качестве примера можно привести такую аналогию. Пусть у нас есть лист фотобумаги с непроявленным изображением — это своеобразное нелокальное состояние. Видимые формы объектов могут появиться только в том случае, если мы опустим фотобумагу в проявитель (взаимодействие с окружением). Ситуация с запутанностью лишь немного сложнее — там нет заранее отображенной «картинки» с негатива. Потенциальное изображение (и оно не одно!) как бы равномерно «размазано» по фотобумаге и поэтому невидимо. Все возможные элементы находятся в суперпозиционном состоянии, у них нет локальных форм. При наличии взаимодействия с окружением суперпозиция разрушается, и проявляется то или иное классическое состояние в зависимости от типа взаимодействий. Этот физический процесс называется декогеренцией. Другой стороной этого процесса является возрастание меры запутанности системы с окружением. Оно будто «растаскивает» в разные стороны части того, что раньше было единым целым, придает им определенную форму, и они становятся видимыми, различимыми с нашей привычной, классической точки зрения.

          Существует и обратный процесс — запутанность можно «концентрировать», увеличивать. Этот процесс называется рекогеренцией, или дистилляцией запутанности. В нашем примере с фотографией это равносильно тому, что с помощью неких хитрых операций с полученным снимком и отработанным проявителем мы сумеем вновь сделать лист фотобумаги чистым, то есть сможем вернуться к исходному суперпозиционному состоянию непроявленных изображений.

          Но запутанность — это не просто наложение различных состояний друг на друга и такое их переплетение, когда нет возможности «найти концы» и отделить одно от другого. Прежде всего, это наличие «потусторонней» связи между подсистемами, которая необъяснима с точки зрения известных физических полей и взаимодействий. Квантовые корреляции — это не просто взаимодействия, а скорее «телепатия», когда один объект непосредственно «ощущает» свое единство с другими телами, когда все внешние изменения мгновенно отзываются в нем самом, и, наоборот, изменения в объекте тут же сказываются на окружении. Здесь вся «игра» идет в пределах того, что принадлежит отдельным подсистемам в равной мере, в той составляющей, которая является общей для них, и эта общая часть изменяется как одно целое одновременно в различных объектах. Мера этого единства и степени взаимопроникновения одного тела в другое может быть разная, и она как раз характеризуется мерой квантовой запутанности. На первый взгляд, отдельные предметы, окружающие нас, могут выглядеть полностью самостоятельными и независимыми друг от друга. Но если они когда-то взаимодействовали (не только при прямом контакте, но и посредством физических полей), то мера квантовой запутанности между ними уже не будет равна нулю, и, пусть в самой незначительной своей части, эти объекты будут связаны квантовыми корреляциями.

          Но у квантовой запутанности и абсолютной согласованности поведения отдельных частей системы есть и обратная сторона. В максимально запутанном состоянии подсистемы полностью лишены самостоятельности, у них как бы нет «свободы воли», они не могут изменяться независимо от других подсистем. Самое малое «шевеление» какой-то одной подсистемы сопровождается одновременным согласованным изменением всех остальных частей системы. У подсистем нет индивидуальной динамики, нет возможности провести границу между собой и окружением и «сказать»: здесь Я, а здесь не Я. Она не может «ощутить» свою индивидуальность и не способна эволюционировать в качестве отдельной самостоятельной «личности».

          Кто-то из читателей может возразить, что все рассуждения о квантовой запутанности относятся исключительно к микрочастицам, и их нельзя распространять на макрообъекты, что все это не имеет отношения к окружающей нас реальности и никак в ней не проявляется. Однако сразу обращает на себя внимание тот факт, что удивительные свойства квантовой запутанности по своим проявлениям очень хорошо перекликаются с теми «сверхъестественными» возможностями человека, которые развивают в себе и широко практикуют представители различных эзотерических школ. В свете квантовой запутанности и процессов декогеренции/рекогеренции уже по-иному воспринимаются многочисленные свидетельства различных чудес и невероятных событий, о которых упоминается в мистической и религиозной литературе.

          Здесь стоит отметить, что теория запутанных состояний — это не теория микрочастиц, как иногда ошибочно считают. Ее основные результаты формулируются в терминах систем и подсистем, то есть общие выводы справедливы и в отношении произвольных макросистем. Микрочастицы являются лишь наиболее удобными объектами для изучения и манипулирования квантовой запутанностью в физических исследованиях. Она у них проявляется особенно сильно, и ее уже невозможно игнорировать, как в случае с макрообъектами. Причем мера квантовой запутанности между частицами может контролироваться и целенаправленно изменяться в очень широких пределах — практически от нуля и вплоть до максимально запутанного, полностью нелокального состояния.

          Мера квантовой запутанности непосредственно связана с информацией, содержащейся в системе, которая может быть выражена количественно, например, через энтропию фон Неймана* для чистых состояний.

 
          * Более подробно см. главу 3, раздел 3.4.

 
          Связь между квантовой информацией и запутанностью позволяет описывать систему в терминах информации. В этом случае физические процессы усиления и уменьшения квантовой запутанности между составными частями системы рассматриваются как процессы обмена информацией между системой и ее окружением. Если запутанность между подсистемами уменьшается, то можно сказать, что система теряет часть своей информации в окружении при взаимодействии с ним. Информация как бы «перетекает» из самой системы в ее внешнее окружение. Былое единство и неразрывная целостность подсистем нарушаются, они отделяются друг от друга, приобретают индивидуальные характеристики и видимую форму (локализуются в виде классических объектов). Квантовая информация, которая связывала раньше части системы в единое целое и позволяла общаться по квантовому каналу связи на телепатическом уровне, уходит в окружение. Части системы теряют согласованность поведения и возможность «прямого знания» друг о друге. Теряется ощущение взаимопроникновения и непосредственного восприятия своих «соседей» как самого себя. При взаимодействии с окружением прямая телепатическая связь между подсистемами заменяется косвенной связью, теперь уже через окружение, и чем больше окружение у нашей системы, тем сильнее «размывается» эффект «прямого знания».

          При описании в терминах квантовой информации замкнутая система — единое информационное поле, которое содержит в себе данные о всех возможных реализациях внутренней структуры системы. Это как бы лист непроявленной фотобумаги, который, тем не менее, содержит вполне определенный набор потенциальных изображений, вся исходная информация там уже содержится.

          В квантовой теории любая замкнутая система находится в нелокальном (непроявленном) состоянии из-за того, что нет внешнего окружения, некому осуществить редукцию. Это нематериальное состояние, о котором можно говорить в терминах квантовой информации, назвав его чистой информацией. А описать его в материальных терминах типа «совокупность большого числа элементарных частиц, физических полей» и т. п. невозможно, поскольку ничего этого просто не существует: это пустота, нелокальное состояние.

          Может возникнуть вопрос: а как же законы сохранения массы, энергии и т. д., которые все мы изучали в школе? Как известно, законы сохранения справедливы для замкнутых систем. А в квантовой теории замкнутая система — это чистая квантовая информация. Поэтому все, о чем мы говорим, сводится к сохранению такой первичной информации. По сути дела, все, чем занимается физика квантовой информации, — это изучение законов, по которым квантовая информация проявляется в локальных дискретных формах тварного мира (декогеренция), и обратного процесса растворения локальных форм, их перехода в нелокальное суперпозиционное состояние (рекогеренция). Квантовая теория, по сравнению с классической физикой, рассматривает более широкий круг явлений и процессов в окружающей реальности на самом фундаментальном уровне. Материальный мир с его законами сохранения — лишь небольшая часть совокупной Квантовой Реальности, и, соответственно, сфера применения законов сохранения материи, с точки зрения квантовой теории, ограничена классической реальностью.


 

Комментарии 

 
0 #13 Dalton 31.03.2019 23:55
Do you mind if I quote a couple of your articles as long as I provide credit and sources back to your blog?
My blog is in the very same area of interest as yours and my users would certainly benefit from some of the information you
present here. Please let me know if this okay with you.
Cheers!

My webpage; international pharmacy: http://canadianpharmacyonli.com/
Цитировать
 
 
0 #12 Kassie 19.03.2019 12:57
Write more, thats all I have to say. Literally,
it seems as though you relied on the video to make your point.
You clearly know what youre talking about, why throw away your intelligence on just posting videos to your weblog when you could
be giving us something enlightening to read?

my webpage ... international pharmacy: http://canadianpharmacyonli.com/
Цитировать
 
 
0 #11 Staci 18.02.2019 12:28
Greate pieces. Keep posting such kind of information on your site.

Im really impressed by your blog.
Hey there, You've done an incredible job. I'll certainly digg it and
in my opinion suggest to my friends. I am confident they will be benefited from this site.


Have a look at my web blog; online
pharmacy canada: http://canadianpharmacyonli.com/
Цитировать
 
 
0 #10 Anita 16.02.2019 04:00
Everything is very open with a precise clarification of the issues.
It was truly informative. Your site is very useful.
Thank you for sharing!

Also visit my web page :: canadian pharmacy
online: http://canadianpharmacyonli.com/
Цитировать
 
 
0 #9 Elwood 13.02.2019 12:44
Write more, thats all I have to say. Literally, it seems as though you relied on the video to make your
point. You definitely know what youre talking about, why waste your intelligence on just posting videos to your site when you could
be giving us something informative to read?



Check out my web blog; canadian online pharmacy: http://canadianpharmacyonli.com/
Цитировать
 
 
0 #8 Fern 11.02.2019 09:54
Hi there mates, pleasant paragraph and nice arguments commented here, I am in fact enjoying by these.


Also visit my web blog canadian prescriptions online: http://canadianpharmacyonli.com/
Цитировать
 
 
0 #7 Essie 08.02.2019 23:23
It's appropriate time to make some plans for the long run and it's time to be happy.
I have learn this publish and if I may just I desire to suggest you
few fascinating things or advice. Perhaps you can write subsequent articles relating to this article.
I want to learn even more issues about it!

Feel free to visit my webpage: online pharmacies canada: http://canadianpharmacyonli.com/
Цитировать
 
 
0 #6 Melody 06.02.2019 15:23
Hey I know this is off topic but I was wondering if you knew of
any widgets I could add to my blog that automatically tweet my newest
twitter updates. I've been looking for a plug-in like this for quite some time and was hoping maybe you would have some experience with something like this.
Please let me know if you run into anything. I truly enjoy reading your
blog and I look forward to your new updates.


Review my weblog canadian pharmacies online: http://canadianpharmacyonli.com/
Цитировать
 
 
0 #5 Cindy 03.02.2019 00:14
I do not even know how I finished up right here, however I assumed this submit was good.
I don't recognise who you are however definitely you are going to a famous blogger if you aren't already.
Cheers!

Here is my web blog online pharmacies canada: http://canadianpharmacyonli.com/
Цитировать
 
 
0 #4 Maximo 31.01.2019 23:38
Your method of telling all in this paragraph is genuinely nice, all can easily understand it, Thanks a lot.


my web blog :: online
canadian pharmacy: http://canadianpharmacyonli.com/
Цитировать
 

Добавить комментарий Сообщение модератору


Защитный код
Обновить