С.И. Доронин
29.03.2016 г.

  На главную раздела "Научные работы"


Глава 1

Магия запутанных состояний


          1.1 На пороге эры квантовых компьютеров


          Сейчас каждый из нас хотя бы в самых общих чертах представляет, что такое обычный компьютер. А что вы скажете насчет компьютера, информационный ресурс которого превышает число частиц во Вселенной (по оценкам специалистов, оно равно 1080), — компьютера, который по своей эффективности превосходил бы обычный ПК примерно во столько же раз, во сколько Вселенная превосходит один атом? Скажете, что это бред, что такое просто немыслимо? И будете неправы! Поскольку в настоящее время работа над такими компьютерами идет полным ходом. Их назвали квантовыми компьютерами. Для этого устройства нужно не так уж много рабочих ячеек памяти, обрабатывающих информацию*, — достаточно будет всего лишь нескольких сотен. Скажем, довольно 300 ячеек, чтобы информационный ресурс компьютера примерно на 10 порядков превысил число частиц во Вселенной (2300 = 1090)**. И весь этот гигантский массив информации будет согласованно изменяться за один рабочий такт. Столь поразительное различие между обычным и квантовым компьютерами объясняется тем, что эффективность последнего растет экспоненциально с увеличением числа его ячеек памяти.


          * Для обычного компьютера это объем оперативной памяти.

          ** Каждая ячейка памяти может находиться в двух основных состояниях: 0 и 1 (один бит), общее число состояний для N ячеек равно 2N. Классический компьютер в каждый момент времени может реализовать лишь одну последовательность состояний из 0 и 1 для своих битов регистра памяти. Квантовый компьютер в один и тот же момент времени может реализовать все возможные варианты таких последовательностей.


          Чтобы вы могли более наглядно представить себе, что такое экспоненциальный рост, напомню известную легенду о том, как индийский правитель решил отблагодарить изобретателя шахмат за новую интересную игру. Тот попросил выдать ему в качестве награды зерна пшеницы: на первую клетку шахматной доски следовало положить одно зернышко, на вторую — два, на третью — четыре, помещая на каждую следующую клетку в два раза больше зернышек, чем было на предыдущей. Царь удивился такой скромной просьбе, однако выполнить ее оказалось невозможно. Во всем мире не нашлось бы столько пшеницы. Таким количеством зерна можно было усыпать всю планету. Амбар, в котором бы поместилась вся эта пшеница, должен был быть высотой до Солнца.

          С квантовым компьютером ситуация та же самая: добавление каждой новой ячейки памяти к уже существующему регистру вдвое увеличивает общую эффективность устройства.

          Число различных состояний ячеек памяти у классического компьютера такое же, как у квантового. Так, классический компьютер с регистром из 300 бит может последовательно перебрать те же 2300 состояний, но в каждый момент времени он может находиться лишь в одном из них. В то время как квантовый компьютер способен находиться одновременно во всех этих состояниях (в их суперпозиции*). Если в классическом регистре изменяется один бит, то другие биты на это никак не реагируют — они не меняются. Когда же в квантовом компьютере изменяется один бит (он называется квантовым битом — кубитом), то вместе с ним согласованно меняются все остальные, и вся суперпозиция мгновенно перестраивается. За счет этого обеспечивается гигантское быстродействие, и по оценкам специалистов получается, что вычислительные ресурсы квантового компьютера будут экспоненциально велики по сравнению с классическим. Для наглядного подтверждения того, насколько значительно преимущество квантового компьютера, можно привести еще один пример. Представьте, что у вас есть квантовый компакт-диск, который, в отличие от обычного, содержит информацию в кубитах, а не в битах. В квантовом CD имеет место суперпозиционное состояние кубитов, которое содержит в себе сразу все возможные дискретные последовательности из 0 и 1. Квантовый CD — это своего рода универсальная матрица, с которой можно «отштамповать» любой классический CD с любой информацией и последовательностью битов. Единственное ограничение — это невозможность превысить объем исходного CD в битах. Таким образом, один квантовый CD содержит в себе одновременно все классические CD, которые были, есть или будут созданы, — с любой информацией, осмысленной или нет, с любой двоичной последовательностью из 0 и 1. Далее мы подробнее поговорим о том, как именно можно с квантового CD «проявить» нужную информацию и «отштамповать» классический CD.


          * Более подробно см. главу 2, раздел 2.4.


          С теоретической точки зрения, создание квантового компьютера особых сложностей не представляет — достаточно того, чтобы ячейки памяти (кубиты) взаимодействовали друг с другом, и мы умели бы целенаправленно манипулировать их состоянием. Однако на практике все оказывается гораздо сложнее — и об этом мы поговорим более подробно в одной из следующих глав.

          А сейчас — немного о том, что предшествовало работе по созданию квантового компьютера. Одним из первых, кто обратил внимание на возможную перспективу создания таких компьютеров, был Ричард Фейнман*.


          * Feynman R. Simulating physics with computers // International Journal of Theoretical Physics. Vol. 21. No. 6/7. Р. 467–488 (1982); Feynman R. Quantum mechanical computers // Foundations of Physics. Vol. 16. Р. 507–531 (1986). (Originally appeared in Optics News, February 1985.)

 
          В 1982 году он задался вопросом, каким должен быть компьютер, позволяющий моделировать природу. Причем имелось в виду не простое моделирование, основанное на хорошо известных законах классической физики, которые отражают ограниченную часть реальности. Фейнман говорил о моделировании физики на фундаментальном уровне, «когда компьютер делает точно то же, что и природа», о более полном и глубоком описании реальности, при котором классическая реальность и ее законы получались бы в классическом приближении как предельный случай (упрощенный вариант квантового описания). Ученый пришел к выводу, что такой компьютер должен быть квантовым. Но речь шла не о том, что он должен работать по законам квантовой механики — на их основе сейчас и так разрабатывается вся электроника, а о том, что, если в настоящее время все современные приборы и компьютеры работают по квантовым законам, но в классическом режиме, то квантовый компьютер и работать должен в квантовом режиме. В этом случае в игру вступает основной принцип квантовой теории — принцип суперпозиции состояний. Компьютер получает возможность оперировать когерентными (согласованными) состояниями ячеек памяти. Такими квантово-когерентными устройствами, рабочим ресурсом которых являются суперпозиционные состояния, человечество никогда еще не располагало. Когда они начнут выходить из научных лабораторий в коммерческое производство и в нашу повседневную жизнь, это станет началом второй квантовой революции. По своим масштабам и последствиям она значительно превзойдет «скромные» результаты первой, которая «родила» атомную бомбу и практически все современные электронно-технические устройства.

          Идеи Фейнмана были интересны, но в те годы они не вызвали особого резонанса в научной среде. Ситуация коренным образом изменилась в 1994 году, когда Питер Шор* показал, что квантовый алгоритм способен свести задачу факторизации (разложения целого числа на простые множители) к полиномиальному классу сложности, в то время как обычный алгоритм экспоненциально зависит от входных данных.


          * Shor P. W. In Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society Press, Los Alamitos, CA). Р. 124 (1994).

 
          Например, обычному компьютеру, выполняющему 1010 операций в секунду, потребуется около года, чтобы разложить на простые множители число из 34 цифр, а время, необходимое для разложения числа из 60 цифр, уже превысит возраст Вселенной (1017 с). Используя же квантовый алгоритм, эту задачу можно решить достаточно быстро.

          Результат, полученный П. Шором, с практической точки зрения означает, что квантовый компьютер способен за реальное время «взломать» шифры, используемые, например, в банковской сфере. Там как раз широко применяется криптосистема, основанная на невозможности разложения достаточно большого числа на простые множители за приемлемое для обычных компьютеров время. Осознав ситуацию и на наглядном примере убедившись в возможностях квантового компьютера, финансовый мир, частные фирмы и государственные учреждения многих стран мира направили огромные средства на научные исследования в области квантовых вычислений. В эту же сферу устремились и многие научные коллективы, срочно переориентировав свою тематику. Квантовым вычислениям стало посвящаться наибольшее количество научных публикаций по сравнению с другими разделами физики. В отдельные годы число напечатанных в реферируемых журналах статей на эту тему превышало количество публикаций на все другие темы из области физики вместе взятые. Все это способствовало тому, что достаточно быстро были созданы реальные прототипы квантового компьютера, а теоретические основы, необходимые для его создания, получили очень мощный импульс к развитию. Прежде всего это касается теории запутанных состояний, теории декогеренции и квантовой теории информации.

          Мы не будем касаться вычислительных возможностей квантовых компьютеров. А вывод Фейнмана относительного того, что квантовые компьютеры способны моделировать реальные процессы на фундаментальном уровне, обсудим подробно, но подойдем к этому вопросу с несколько другой стороны.

          Дело в том, что в процессе работы над квантовым компьютером ученым пришлось глубоко вникнуть в эти фундаментальные законы. И это вполне естественно — практическая работа квантово-когерентных устройств на фундаментальном уровне реальности предполагает более глубокое понимание законов этого уровня. Фейнман говорил об этом так: «Если предположить, что мы знаем все физические законы в совершенстве, то, конечно, нам не надо уделять никакого внимания компьютерам. И все же, если задуматься, нам есть что узнать о физических законах, и, если уж быть совсем откровенным, я признаю, что мы многого не понимаем». И действительно, при работе над квантовым компьютером удалось узнать очень много нового о фундаментальных законах, о процессах, с которыми раньше физика никогда не имела дела — таких как декогеренция и рекогеренция, о которых мы еще будем говорить подробно. В результате в науке возникли новые прикладные направления: теория запутанных состояний, теория декогеренции, квантовая теория информации и другие современные разделы квантовой теории, которые часто объединяют под общим названием «физика квантовой информации».

          Сейчас довольно часто можно услышать и о других теориях, претендующих на фундаментальность, например, о теории струн, М-теории и т. д. Следует отметить, что эти теории не имеют отношения к реальным физическим процессам в окружающем нас мире. Они никогда не были привязаны к физическим экспериментам и их объяснению. Скорее это красивые математические трюки, игры ума, далекие от реальности математические абстракции. В отличие от них, теория запутанных состояний и теория декогеренции развивались непосредственно в результате практической работы в физических лабораториях как теоретические модели, позволяющие описывать эксперименты. Адекватность этих моделей реальным физическим процессам проверяется в технических устройствах, которые разрабатываются на основе этих теорий. Думаю, понятно, что если бы модели были неадекватные, то и приборы бы не работали.

          Вы спросите, а при чем здесь магия и «сверхъестественное»? Все очень просто. Те состояния и физические процессы, которыми вплотную пришлось заняться при работе над квантовыми компьютерами, не имеют классического аналога. Это нелокальные состояния, и процесс их «проявления» (декогеренция) в виде локальных элементов реальности, по сути — «материализация» объекта «из ничего». А обратный процесс «растворения» локальных объектов и их перехода в нелокальное состояние (рекогеренция) похож на то, что некоторые фантасты называют переходом в гиперпространство, «нуль-проколом» и т. п. Внешне это будет выглядеть как исчезновение объекта из нашей физической реальности — наподобие того, как, по свидетельствам очевидцев, иногда «растворяются» НЛО.

          С точки зрения классической физики, эти процессы в прямом значении слова «сверхъестественные». И я полагаю, что они напрямую связаны с магией, понимаемой в самом широком смысле как любые «чудеса» с точки зрения классической физики и наших привычных представлений о физической реальности.

          Классическая физика описывает «проявленную» реальность. Квантовая теория обосновывает существование более глубокой и фундаментальной реальности, «непроявленной», нелокальной. Квантовая теория вплотную подошла к количественному описанию нематериальных объектов и нелокальных корреляций, я бы сказал — к описанию Духа, или к чисто-квантовой информации, и физика квантовой информации изучает законы ее «проявления» в виде локальных элементов реальности, своего рода манифестацию Духа.

          Сейчас квантовой теории осталось сделать совсем небольшой шаг, причем даже не теоретический, а чисто психологический: немного изменить терминологию и более доступным языком рассказать о достигнутых результатах. В том числе о двойственной природе всех окружающих объектов — нелокальной (духовной, нетварной) и плотной (материальной, тварной). О том, что в основе классического мира лежит нелокальный квантовый источник реальности, который находится вне пространства и времени, который нематериален.

          К теории запутанных состояний в какой-то мере близка голографическая теория, которая не является теорией в прямом смысле слова, так как не содержит количественного описания нелокальности, «голографичности». Это рассуждения (если утрировать) на уровне аквариума с рыбкой (известный пример Д. Бома), некие общие размышления о роли нелокальных корреляций и попытка наглядно себе представить, как они действуют. Отправной точкой рассуждений Д. Бома* как раз и были запутанные состояния ЭПР-пары (Эйнштейна-Подольского-Розена), когда «сцепленные» частицы ведут себя строго взаимосогласованно, так что изменение состояния одной из них приводит к мгновенному изменению другой, сколь далеко бы она ни находилась от первой. Размышляя над этой загадкой, противоречащей не только здравому смыслу, но и эйнштейновской теории относительности, налагающей жесткие ограничения на скорость распространения взаимодействий, Бом пришел к выводу, что элементарные частицы взаимодействуют на любом расстоянии не потому, что они обмениваются таинственными сигналами между собой, а потому, что их «разделенность» есть иллюзия. Иными словами, на каком-то более глубоком уровне реальности запутанные частицы — это вовсе не отдельные объекты, а продолжения чего-то более фундаментального и цельного.

 
          * См., например, статью Киви Берда «Освоение реальности»: http://www.computerra.ru/offline/2002/440/17528/.

 
          Представим себе, говорит Бом, аквариум с рыбкой. Допустим, по какой-то причине мы не можем разглядывать эту систему непосредственно, а имеем лишь возможность смотреть в два телеэкрана на аквариум, снимаемый спереди и сбоку. Глядя на экраны, легко заключить, что две плавающие там рыбки — это отдельные объекты. Но, присмотревшись, можно выяснить, что между двумя рыбками на двух экранах существует какая-то отчетливая взаимосвязь. Если одна рыбка меняет положение, то одновременно приходит в движение и другая. Причем всегда оказывается, что если одну видно «анфас», то другую — непременно «в профиль». И не зная, что снимается один и тот же аквариум, внимательный наблюдатель скорее заключит, что рыбки неведомым образом мгновенно сообщаются друг с другом, нежели припишет это случайности.

          Но это были всего лишь общие рассуждения. На основе такой «теории» не построишь технические устройства, работающие на нелокальных корреляциях. Голографическую парадигму можно рассматривать как один из вариантов иллюстрации теории запутанных состояний «на пальцах», но и эта иллюстрация будет неполной, поскольку в ней все равно остается много привычных представлений.

          Помимо теории запутанных состояний, в настоящее время нет ни одной концепции или альтернативной теории (типа торсионной), в которой была бы введена количественная мера* квантовой нелокальности. К тому же теория запутанных состояний входит в стандартную, общепринятую интерпретацию квантовой механики и не является альтернативной типа «многомировой» интерпретации Эверетта.

 
          * Более подробно см. главу 3, раздел 3.3.

 
          Когда речь заходит о «сверхъестественном», то в этой связи иногда упоминают теорию торсионного поля Акимова-Шипова. Она тоже появилась как результат математических изысканий и никогда не была привязана к реальным физическим процессам. Многие понятия из теории торсионного поля могут быть выражены в терминах теории запутанных состояний. Например, то, что в теории Акимова-Шипова называется «первичным торсионным полем», в квантовой теории именуется «чистым запутанным состоянием», что, в отличие от первого термина, является общепринятым в научной среде, поэтому не вызывает лишних вопросов у оппонентов. Как и у первичного торсионного поля, в чистом запутанном состоянии составляющие подсистемы не взаимодействуют между собой в привычном понимании. Между ними есть только квантовые нелокальные корреляции, когда в каждой части системы (подсистеме) содержится информация об остальных, и все они ведут себя согласованно: изменение одной мгновенно сказывается на других.

          По моему мнению, торсионную теорию можно рассматривать как своеобразную интерпретацию отдельных положений теории запутанных состояний. В любом случае теории торсионного поля явно недостаточно для того, чтобы управлять нелокальными квантовыми корреляциями в системе (торсионными полями). В ней не формализовано описание динамических процессов перехода между классическими и квантовыми корреляциями, нет количественных характеристик для оценки квантовой запутанности в системе (степени близости к первичному торсионному полю) и т. д. В этом отношении у современной квантовой теории есть ряд очевидных преимуществ — она объясняет физическую природу нелокальных взаимодействий, имеет развитый теоретический аппарат для количественного описания нелокальных явлений, в том числе и информационных процессов в терминах квантовой информации.

          Можно еще упомянуть о «теории эфира» и ее современных модификациях. Все рассуждения об эфире как о некой «пустоте», состоящей из «электрически нейтральной материи», на мой взгляд, являются упрощенными представлениями о нелокальных состояниях. Если представления квантовой теории о когерентных суперпозиционных состояниях попытаться выразить языком классической физики, то получатся фразы типа «тончайшая субстанция, без трения проникающая в физические тела». В некоторых современных концепциях теории эфира предполагается, что, воздействуя на него, можно добиться различной его концентрации. Управление эфиром, как я полагаю, это то же самое, что управление мерой квантовой запутанности (процессами декогеренции/рекогеренции). Более того, квантовая теория открывает возможность воздействовать на «абсолютную пустоту» в прямом смысле этого слова. На пустоту, в которой нет ни материи, ни вещества, ни поля — ничего с точки зрения классической физики.

          Теории эфира, по моему мнению, не смогут ничего объяснить, если не сумеют выйти за рамки классического описания и не введут в рассмотрение суперпозиционные состояния. В лучшем случае они будут давать классическое приближение квантового описания реальности. Все теории эфира — это попытка описать в терминах классической физики отдельные стороны и особенности когерентных суперпозиционных состояний. Какие-то частные моменты в них схвачены, но до цельной, логичной картины реальности, которую дает квантовая теория, им очень далеко.

          Подобная ситуация сложилась и с понятием физического вакуума, о котором в современных научных публикациях тоже все чаще говорят в терминах нелокальных суперпозиционных состояний.

 

 

Добавить комментарий Сообщение модератору


Защитный код
Обновить