Путенихин П.В.
09.03.2016 г.

  На главную раздела "Научные работы"




          Анализ квантово-механических аргументов


          В работе [4, 40] Аспект делает следующее заключение:

          "квантово-механические вычисления показывают, что хотя каждое идивидуальное измерение дает случайные результаты, эти случайные результаты коррелированны, как показывает уравнение (6). Для параллельной (или перпендикулярной) ориентации поляризаторов корреляция полная (|EQM|= 1)".


          Под термином "корреляция" скрывается обычное понятие: взаимозависимы. То есть каждый из результатов измерения случаен, а друг с другом они строго взаимосвязаны. Проведём аналогию с подбрасыванием монеты. Производим многократные подбрасывания монет и регистрируем два события: верхнюю сторону монеты и нижнюю сторону монеты. Очевидно, что каждое измерение даёт случайный результат: сверху с вероятностью 1\2 оказывается либо орёл, либо решка. Снизу с вероятностью 1\2 оказывается либо решка, либо орёл. Но оба измерения строго коррелированы, причём корреляция полная. Если следовать квантовая логике, то нам следовало бы считать, что эти два события независимы. Нетрудно заметить, что в этом случае неравенства Белла будут нарушены для любой теории со скрытыми переменными. Напомним, что речь идёт о двух сторонах одной и той же монеты [35], а теории со скрытыми параметрами должны, в сущности, отражать тот факт, что две стороны монеты жестко связаны друг с другом.

          Рассмотрим теперь весьма показательные выводы, полученные Аспектом на примере оптического варианта мысленного эксперимента ЭПР в версии Бома в статье [4, 40]:

          "немедленно после первого измерения фотон v1 получает поляризацию |a>: это очевидно, потому что это было измерено поляризатором, ориентированным по a, и был получен + результат. Более удивительно, отдаленный фотон v2, который еще не взаимодействовал ни с каким поляризатором, также спроектировался в состояние |a> с определенной поляризацией, параллельной той, которая найдена для фотона v1".

          Формулировки исключают любые двусмысленности: измерение первого фотона приводит к проектированию второго фотона в определённое состояние. Это ни что иное, как зависимость одного измерение от другого. Подчеркнём, что измерение первого фотона произошло в одной точке пространства, а второй фотон спроектировался в определённое состояние в другой точке пространства. То есть действия, выполненные над первым фотоном, привели к изменению во втором фотоне, находящемся на удалении от первого.

          Квантовая механика предлагает называть это нелокальностью, поскольку не может признать наличие сигнала, с помощью которого действия над первым фотонам были переданы на второй фотон. Однако факт влияния на второй фотон удалённого от него измерения отмечается отчётливо [4, 40]:

          i. Фотон v1, который не имел явно определенной поляризации перед ее измерением, получает поляризацию, связанную с полученным результатом, во время его измерения: это не удивительно.

          ii. Когда измерение на v1 сделано, фотон v2, который не имел определенной поляризация перед этим измерением, проектируется в состояние поляризации, параллельное результату измерения на v1. Это очень удивительно, потому что это изменение в описание v2 происходит мгновенно, безотносительно расстояния между v1 и v2 в момент первого измерения.

          Отметим и мы это ещё раз, акцентируя внимание на самом главном, зависимости состояния второго фотона от измерения, произведённого над первым: когда измерение v1 сделано, фотон v2 проектируется. Для классической теории вероятности и формальной логики – это рядовое явление. Происходит одно событие, затем происходит второе. Если не произошло первое, то не происходит второе. Первое – причина, второе – следствие. Но для квантовой механики это недопустимо [4, 40]:

          "Эта картина находится в противоречии с относительностью. Согласно Эйнштейну, событие в данной области пространства-времени не может находиться под влиянием события, произошедшего в пространстве-времени, которое отделено пространственно-подобным интервалом. Неразумно пытаться найти более приемлемые картины, чтобы "понять" ЭПР-корреляции".


          Странно видеть в качестве довода утверждение: "неразумно пытаться". Разумнее безосновательно, бездоказательно ввести фактически абсурдное понятие, не противоречащее теории относительности, но противоречащее логике и теории вероятности: нелокальность. Это можно понять: квантовая механика стремится сохранить справедливость специальной теории относительности. Но удалось ли это ей?

          Описывая удивительные свойства коррелированных фотонов, Аспект отмечает [4, 40]:

          "Это удивительное заключение, однако, ведет к правильному заключительному результату (3), начиная с прямого применения закона Малуса, что последующее измерение, выполненное по b на фотоне v2 будет вести к

Пример изображения".

          Присмотримся и мы к этому закону. В изложении Аспекта мы видим некоторый логический интервал, провал, обрыв линии рассуждений. В начале фрагмента отчётливо и недвусмысленно отмечено первое событие: измерение поляризации фотона v2. Мы вправе задаться вопросом, а что на самом деле является вторым событием? Рассмотрим выражение (4) в статье Аспекта [4, 40]:

Пример изображения

          Нас интересует в первую очередь система обозначений, принятая в статье. А именно, что обозначает выражение Р++(а,а)? Из текста статьи следует, что это вероятность совместного обнаружения фотонов в ++ каналах поляризаторов, когда а=b. В законе Малуса эти направления не равны, поэтому величина Р++(а,b) обозначает вероятность обнаружить фотоны в ++ каналах поляризаторов в направлениях а и b. Следовательно, события, которые описывает закон Малуса – это два события: обнаружение первого фотона v1 поляризатором I в направлении a в канале +, и обнаружение второго фотона v2 в поляризаторе II в направлении b в канале +. То есть мы утверждаем, что вторым событием является событие, аналогичное первому, - измерение поляризации фотона v2, поскольку суть измерений в данном эксперименте заключается в определении поляризации каждого из двух фотонов. При этом основным, главным результатом мы по-прежнему считаем вероятность наступления совместного события P++(a,b). Нам предлагают, что все эти сведения заключены в выражении закона Малуса. Но это не верно, это является очень хорошо закамуфлированной подменой понятий, поскольку P++(a,b) – это не вероятность наступления второго события. Это вероятность совместного наступления двух событий: регистрации обоих фотонов в каналах ++.

          Выше в выражении (2) статьи [4] было показано, что существуют "одиночные вероятности" индивидуальных измерений на фотонах v1 и v2:

Пример изображения

          Это два самостоятельных, индивидуальных измерения, каждое из которых имеет свою собственную, самостоятельную, индивидуальную вероятность. И нас интересует совместная вероятность наступления этих двух индивидуальных событий. Как было показано выше, эта вероятность вычисляется по-разному, что определяется тем, зависимые эти два события или независимые. Рассмотрим ещё раз уравнение закона Малуса. Слева, как мы утверждаем, записана вероятность совместного наступления двух событий – измерений над двумя фотонами. Справа, утверждаем мы, – произведение двух вероятностей: 1\2 и cos2(a,b). На каком основании мы трактуем эти величины как вероятности? К этом имеется две причины. Первая: результирующая вероятность является произведением, поэтому оба сомножителя мы имеем полное право рассматривать как вероятность некоторого события. Вторая: каждый из сомножителей имеет полное сходство с вероятностью хорошо известных квантовых событий. А именно. В полном соответствии с выражением (2) статьи Аспекта мы рассматриваем величину 1\2 как вероятность индивидуального измерения над первым фотоном. И по такой же причине второй сомножитель трактуется как вероятность наступления второго из двух событий: cos2(a,b), только под углом (а,b) подразумевается угол между поляризацией второго фотона и направлением ближайшего к нему поляризатора. Из квантовой механики известно: вероятность того, что фотон пройдет через поляризатор, определяется уравнением:

P(θ) = cos2(θ)     (9)

где:
θ –угол между поляризацией фотона и поляризатора.

          Мы считаем это сходство не простой случайностью, совпадением, а закономерным отражением условий эксперимента.

          Итак, мы приходим к уверенности, что вероятность совместного наступления двух описанных событий P++(a,b) равна произведению вероятности наступления каждого из событий. Это выражение отражает известный, отмеченный выше стандартный факт из теории вероятности о совместном наступлении двух независимых событий. В нашем случае это означает ни что иное, как априорное признание этих двух событий независимыми. Казалось бы, это полностью соответствует квантово-механическим представлениям о нелокальности: выражение трактуется именно так, как этого и требует квантовая теория.

          Но именно здесь и скрыта "главная тайна" нелокальности. Дело в том, второе из двух событий – это совсем не то событие, которое должно быть рассмотрено, проанализировано в этом эксперименте. Это либо подмена понятий, либо ошибка. Ведь на самом деле вероятность регистрации второго фотона описывается выражением (2), а не выражением (9). То есть, выражение (8) должно иметь совершенно иной вид:

Пример изображения     (10)

          Именно это выражение, а не выражение закона Малуса отражает реальный факт вероятности наступления двух действительно независимых событий: регистрации каждого из фотонов (необходимо заметить, что существует выражение, более приближенное к условиям запутанности [38], но использование данного выражения вполне допустимо). И именно это выражение является по существу основой для вывода неравенств Белла для теорий с дополнительными параметрами.

          Очевидно, что выражение (10) в эксперименте нарушается, а правильные результаты даёт использование выражения (8). Из этого с неизбежностью следует одно из двух утверждений: либо два события являются зависимыми либо правило умножения вероятностей стандартной теории вероятности (колмогоровской) ошибочно. Да, известно о существовании так называемой неклассической квантовой теории вероятности. Но, похоже, эта неклассичность состоит в простом отрицании положения теории вероятности, "подгонке" квантово-механического решения под экспериментальный ответ. Действительно, явление запутанности легко объяснимо с точки зрения классической теории вероятности. Выражение (8) с очевидностью отражает тот факт, что два измерения над фотонами являются зависимыми. В этом случае второе из событий, "правильное", действительно независимое подменятся на другое событие, которое по отношению к первому измерению является независимым лишь косвенно, при соблюдении некоторых условий (соблюдение лоренц-инвариантности). Каким бы ни было первое измерение, над первым фотоном, результат второго, подменённого измерения является по отношению к нему независимым только после перехода второго фотона в определённое состояние поляризации. Только после того, как второй фотон спроецировался в состояние с определённой поляризацией, два новых совместных события измерений становятся независимыми. Но сам по себе переход второго фотона в состояние с определённой поляризацией однозначно зависит от первого измерения, то есть является событием достоверным.

          Попробуем теперь ответить на вопрос, сформулированный выше: введением понятия нелокальность квантовая механика стремится сохранить справедливость специальной теории относительности. Удалось ли ей это?

В начало                               Продолжение
 

Добавить комментарий Сообщение модератору


Защитный код
Обновить