Путенихин П.В.
07.03.2016 г.

  На главную раздела "Научные работы"




          Немного о зависимых и независимых событиях


          Являются ли квантовые события независимыми? Очевидно, что первое из измерений запутанных частиц можно с полным правом назвать независимым. Нет никаких указаний на то, что значение вероятности равное 1\2 может быть изменено каким-либо способом. Ничто не может повлиять на исход первого измерения: вероятность получения некоторого результата строго равна 1\2. При любом измерении эта величина остаётся неизменной, то есть на неё в принципе не оказывается никакого влияния. Либо это такое "влияние", которое никак не изменяет результат. Но этого нельзя сказать о втором измерении. Его результат неопровержимо зависит от результата первого измерения. Вероятность наступления некоторого результата во втором измерении однозначно определяется тем, какую поляризацию получит фотон в первом измерении. Есть некоторые установки (настройки) поляризаторов, при которых эта вероятность превращается в свою предельную форму – достоверность. То есть с достоверностью (вероятностью, равной единице) будет наблюдаться заранее назначенный результат. Чтобы убедиться в этом, рассмотрим некоторые базовые положения классической теории вероятности.

          Выше в данной статье мы привели высказывание Холево:

          "Это условие ... запрещает мгновенное влияние измерения, проводящегося в одной системе, на измерения в другой системе" [51].

          Мы специально выделяем слово "влияние", поскольку именно оно является ключевым, именно в нём, во влиянии заключено противоречие между нелокальностью и локальным реализмом. Давно известно, что квантовая механика предложила собственную, квантовую логику и собственную, квантовую теорию вероятностей. Поскольку собственно квантовой теории вероятности как таковой, видимо, нет, в роли такой теории выступает сама квантовая механика.

          Одним из знаменитых правил этой теории является следующее:

          "Сложение волновых функций (амплитуд вероятностей), а не вероятностей (определяемых квадратами модулей волновых функций) принципиально отличает квантовую теорию от классической статистической теории, в которой для независимых событий справедлива теорема сложения вероятностей" [28, c.8]. Этот довод при объяснении ЭПР-парадокса можно услышать довольно часто. Отрицая зависимость событий, которая неявно требует обмена сигналами, утверждается, что просто вероятности вычисляются по другим, квантовым правилам. Чтобы увидеть сходство или различие классического и квантового подходов к сложению вероятностей рассмотрим суть классической теоремы (правила) сложения вероятностей:

          "Вероятность наступления в некоторой операции какого-либо одного (безразлично какого именно) из результатов А1, А2, ..., Аn равна сумме вероятностей этих результатов, если каждые два из них несовместимы между собой" [19].

          Теорема сложения может быть представлена и в таком виде:

          "Если события A1, A2, ..., Ar таковы, что каждые два из них несовместны, то вероятность их объединения равна сумме их вероятностей" [44].

          Здесь под объединением событий понимается следующее. Событие В называется объединением (суммой) событий A1, A2, ..., Ar,-, если оно имеет вид: "наступает или A1, или А2, ..., или Ar".

          "Суммой или объединением нескольких событий A1, A2, ..., An называется событие C, состоящее в том, что произошло хотя бы одно из событий A1, A2, ..., An:
C = A1 + A2 + . . . + An". [23, с.35]

          Под совмещением событий A1, А2, ..., Ar понимается событие С, если оно имеет вид: "наступает и A1, и A2, ..., и Ar".

          Иногда совмещение называют также произведением или пересечением событий. В частности, для двух событий: "Произведением или пересечением событий А и В назовем событие, обозначаемое А∩В или АВ, которое происходит тогда и только тогда, когда происходят события А и В вместе" [43, с.3].

          Напротив, несовместными событиями считаются события А и В, если их одновременное осуществление невозможно, то есть если не существует среди исходов испытания ни одного благоприятствующего и А и В. Как видим, теорема сложения вероятностей вплотную соприкасается с понятием зависимых событий, которые имеют очевидное отношение к отмеченному выше "мгновенному влиянию разделённых измерений" в выкладках Холево. Поскольку мы пытаемся показать, что квантовые события в ЭПР-парадоксе являются зависимыми, нам необходимо рассмотреть сущность зависимости случайных событий. Приведём классическое определение независимых событий, данное Колмогоровым [24, c.19]:

          "Пусть даны n испытаний Пример изображения т.е. n разложений (i = 1, 2, …, n)

Пример изображения
 
основного множества Ω на сумму (непересекающихся) событий. Тогда можно задать r = r1r2...rn вероятностей

Пример изображения

вообще произвольно при единственном условии

Пример изображения

          О п р е д е л е н и е 1. Испытания
Пример изображения будем называть независимыми, если для любых k1, k2 ... kn имеет место равенство

Пример изображения "

          Похожие определения встречаются у современных авторов. Например:

          "Если равенство

q(x) = qj(xj)     (*)

верно для всех x = (xj) € Х, то q называют произведением qj и пишут q = Пqj. Если q = Пqj, то говорят, что случайные переменные fj (стохастически) независимы, а если q ≠ Пqj – что (стохастически) зависимы". [41, c.37]


          Очевидно, что условие независимости событий следует из так называемой теоремы умножения вероятностей: вероятность совместного наступления зависимых событий равна произведению их вероятностей. Аналогичная формулировка есть и у других авторов. Например, Садбери приводит такую [42]:

          "Пусть Е и F – два независимых эксперимента, т.е. нет причинного влияния одного из них на другой и нет общего причинного влияния на оба этих эксперимента. Тогда, если α1,...,αm - возможные результаты эксперимента Е (с начальным состоянием ψ) будет α1, а β1,...,βn - результаты эксперимента F (с начальным состоянием φ), будет β1, равна

Пример изображения ".

          В более простом виде теорема умножения (совмещения) вероятностей может быть сформулирована следующим образом [44]:

          "Вероятность совмещения событий A1, A2, ..., Ar равна вероятности события A1, умноженной на вероятность события A2, взятую при условии, что А1 наступило, ..., умноженной на вероятность события Ar при условии, что A1, A2, ..., Ar-1 наступили. Для независимых событий теорема умножения приводит к формуле:

P(A1 и A2 и ... и Ar) = P(A1)•P(A2)... •P(Ar)"

          Формулировку теоремы умножения вероятностей (которая позволяет вычислить вероятность совмещения событий) для двух событий находим и у Феллера [48, с.122]:

P{AH} = P{A|H}•P{H}.

          Далее в своей работе Феллер рассмотивает ряд примеров с зависимыми и условными вероятностями и делает затем следующее уточнение [48, с.131]:

          "В приведенных выше примерах условная вероятность P{A|H}, вообще говоря, не была равна безусловной вероятности P{A}. Говоря грубо, знание того, что произошло событие Н, изменяло нашу оценку шансов появления события А. Только в том случае, когда P{A|H} = P{A}, это знание не оказывает никакого влияния на оценку шансов появления события А. Мы будем говорить, что в этом случае событие А не зависит от события Н". Обратим на это внимание: знание об одном событии изменяет оценку шансов другого события, что трактуется Феллером как зависимость событий.

          "Далее, из формулы (1.5) следует, что условие P{A|H} = P{A} можно записать в этом случае в форме

P{AH} = P{A}•P{H}.

          Это равенство симметрично относительно А и Н и показывает, что если А не зависит от Н, то и Н не зависит от А" [48].


          На этом основании Феллер в отношении независимых событий приводит такое, как он его назвал, симметричное определение [48]:

          "Если А не зависит от Н, то и Н не зависит от А. Поэтому мы предпочтем дать следующее симметричное

          Определение 1. Два события А и Н называются независимыми, если они удовлетворяют соотношению:

P{AH} = P{A}•P{H}.

          Это определение применимо и в случае P{H} = 0, когда условная вероятность P{A|H} не определена".


          Для наглядности следом он приводит такой пример [48]:

          "Из колоды игральных карты вытаскивают наугад одну карту. Из соображений симметрии мы склонны ожидать, что события "трефа" и "туз" независимы. Действительно, их вероятности равны 1/4 и 1/13, а вероятность их одновременного осуществления равна 1/52".

          Заметим, что справедлива и обратная теорема [27]:

          Если для событий А и В выполняется равенство Р(АВ)=Р(А)Р(В), то эти события независимы.

          Точно такое же определение независимости для двух событий находим у Черновой [52, c.34]:

          Определение 19. События А и В называются независимыми, если

P(A∩B) = P(A)P(B).

          Отметим, что правило умножения вероятностей может иметь и ещё одну, несколько отличную от приведённых формулировку:

          "Правило умножения. Вероятность совместного наступления двух событий равна произведению вероятности первого события на условную вероятность второго, вычисленную в предположении, что первое событие состоялось" [19, с.29].

          И далее приводится уже знакомая нам особенность вероятностей независимых событий:

          "Вероятность совместного наступления любого числа взаимно независимых событий равна произведению вероятностей этих событий" [19, с.32].

          Для справки напомним определение достоверного события [15, c.5]:

          "Достоверным называется событие U, которое в результате опыта непременно должно произойти.

P(U) = 1."

          И вновь о событиях зависимых и независимых. Вентцель даёт определение независимых событий через условную вероятность одного события от другого [15, c.21]:

          "Условной вероятностью события А при наличии B называется вероятность события А, вычисленная при условии, что событие В произошло. Эта вероятность обозначается Р(А|B). События А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Для независимых событий

P(A|B) = P(A); P(B|A) = P(B)."

          Теорема умножения вероятностей

          "Вероятность произведения двух событий равна вероятности одного из них, умноженной на условную вероятность другого при наличии первого:

P(AB) = P(A) P(B|A)

или

P(AB) = P(B) P(A|B).

Для независимых событий А и В

P(AB) = P(А) P(B)."

          Итак, теорема об умножении и обратная к ней теорема утверждают, что зависимыми событиями являются два события, для которых выполняется равенство:

P(AB) = P(А) P(B).

          Теорема (правило) сложения вероятностей классической статистической теории, как отмечено, касается событий независимых. В противовес этому квантовое правило предлагает сложение амплитуд вероятностей. При этом утверждается, что события, амплитуды вероятностей которых складываются, являются независимыми и нелокальными. Однако выражения (уравнения) и результаты этих вычислений демонстрируют подобие зависимости между событиями. Анализ описаний множества экспериментов наводит на мысль, что описания содержат даже не завуалированную, а явно видимую зависимость событий. Поэтому квантовое правило сложения амплитуд вероятностей фактически является своеобразной попыткой скрыть эти зависимости.

В начало                               Продолжение
 

Добавить комментарий Сообщение модератору


Защитный код
Обновить