Путенихин П.В.
06.03.2016 г.

  На главную раздела "Научные работы"




          Как "работают" неравенства Белла


          Итак, две разделённые пространственно частицы образуют нелокальную систему: действия над одной из них не изменяют состояния другой, но при этом эти состояния частиц оказываются коррелированными, то есть связанными друг с другом. Следовательно, суть парадокса ЭПР состоит не только в утверждении неполноты квантовой механики, не только в утверждении о неполном описании волновой функцией состояния квантовых объектов, но и в противопоставлении в целом явления нелокальности и локального реализма.

          Рассмотрим одно из наиболее удачных и компактных описаний "механизма" неравенств Белла в варианте Белла-Клаузера-Хорна-Шимони в изложении Холево. Рассматривая мысленный эксперимент ЭПР, Белл обратил внимание на глубокий и неожиданный вывод [51]:

          "если пытаться описывать корреляции измерений спинов двух частиц классически и в соответствии с принципом локальности, то оказывается невозможным достичь такого характера и уровня коррелированности, который соответствует предсказаниям квантовой механики. Более того, этот уровень коррелированности может быть количественно сформулирован и проверен экспериментально. Дадим точную формулировку...

          Оказывается, что такая корреляция не может быть смоделирована никакой классической моделью составной системы, удовлетворяющей принципу локальности. Это вытекает из следующего неравенства Белла–Клаузера–Хорна–Шимони. Пусть Xj, Yk, j,k = 1,2 — случайные величины на произвольном вероятностном пространстве Ω, такие что |Xj| ≤ 1, |Yk| ≤ 1. Тогда для любого распределения вероятностей на Ω корреляции этих величин удовлетворяют неравенству

|EX1Y1 + EX1Y2 + EX2Y1 - EX2Y2| ≤ 2,    (2.7)

где E — соответствующее математическое ожидание.

          Доказательство получается усреднением элементарного неравенства

-2 ≤ X1Y1 + X1Y2 + X2Y1 - X2Y2 ≤ 2.

          Принцип локальности, или, лучше сказать, разделимости в данной модели заключается в том, что физическая наблюдаемая для первой системы описывается одной и той же случайной величиной (X1 в случае первых двух корреляций, X2 в другом случае) независимо от того, какая величина — Y1 или Y2 измеряется во второй системе. Это условие кажется настолько естественным, что оно даже трудно уловимо. Однако именно оно запрещает мгновенное влияние измерения, проводящегося в одной системе, на измерения в другой системе. Если от него отказаться, то интересующие нас четыре физические корреляции могут быть любыми величинами из отрезка [-1,1]".


          Очевидно, что полученное неравенство справедливо. Никакие значения независимых случайных величин не позволят получить значения выражения, превышающего 2. Но, как утверждается, квантовые частицы в запутанном состоянии, тем не менее, нарушают это неравенство. Каким образом – пока неясно. Рассмотрим механизм этого нарушения в работах Алена Аспекта [4].

          Для теорий со скрытыми переменными Аспект приводит такую форму функции корреляции:

E(a, b) = ∫dλp(λ)A(λ, a)B(λ, b)     (12)

          Отмечая, что есть много различных форм и демонстраций неравенств Белла, он предлагает рассмотреть выражение

s = A(λ, a)•B(λ, b) - A(λ, a')•B(λ, b) + A(λ, a)•B(λ, b') + A(λ, a')•B(λ, b')
= A(λ, a)[B(λ, b) - B(λ, b')] + A(λ, a')[B(λ, b) - B(λ, b')]     (17)

          Помня, что эти четыре величины А и B принимают только значение ±1, простой осмотр второй строки (17) показывает, что

s(λ, a, a', b, b') = ± 2.     (18)

          Среднее значение s по λ поэтому заключено между + 2 и – 2

2 ≤ ∫dλp(λ)•s(λ, a, a', b, b') ≤ 2.     (19)

          Согласно (12), мы можем переписать эти неравенства

- 2 ≤ S(λ, a, a', b, b') ≤ 2.     (20)

где

S(λ, a, a', b, b') = Е(a, b) - Е(a, b') + Е(a', b) + Е(a', b')     (21)

          Это и есть, упоминавшиеся нами неоднократно BCHSH - неравенства, то есть неравенства Белла, выведенные Клаузером, Хорном, Шимони и Хольтом. Легко заметить их сходство с формой, приведённой Холево, что в общем-то очевидно. В экспериментах Аспекта они относятся к комбинации S из четырех коэффициентов корреляции поляризации, привязанным к двум направлениям анализа для каждого поляризатора (a и a' для поляризатора I, b и b' для поляризатора II). Аспект отмечает их общность: они применимы к любой теории с дополнительными параметрами в самой общей формы.

          Далее Аспект приводит ещё одну форму неравенств Белла. Обращаем на это особое внимание: это неравенства, созданные не для теорий с дополнительными параметрами, а для квантовой механики. То есть существуют два класса неравенств Белла: для локальных теорий, приведённые выше, и для квантовой механики, которые мы сейчас получим. Для получения квантово-механических "неравенств Белла" Аспект использует такой же приём. Рассмотрим квантово механическое значение S

SQM(λ, a, b, a', b') = cos(a, b) - cos(a, b') + cos(a', b) + cos(a', b')     (23)

          Это - функция трех независимых переменных (a, b), (b, a') и (а', b'). Заметим, что

(a, b') = (a, b) + (b, a') + (а', b')

          Найдём экстремум значения SQM, приравняв нулю три частные производные

(a, b) = (b, a') = (а', b') = θ     (24)

и

sin θ = sin 3θ     (25)

          Абсолютные максимумы и минимумы SQM равны

SQM = 2√2 для θ = ± π/8     (26)
SQM = -2√2 для θ = ± 3π/8     (27)

          Эти значения являются решением уравнения (25).

          Итак, мы видим, что для квантовой механики значения модуля в неравенствах Белла несколько выше, чем для локальных теорий. Собственно говоря, в этом и заключается механизм "работы" неравенств Белла, сущность их нарушения. Эти неравенства, составленные для локальных теорий, не могут принимать значений, обеспечиваемых неравенствами, составленными для квантовой механики:

SQM = 2√2     (22)

          Как видим, это квантово-механическое предсказание определенно находится в противоречии с неравенствами Белла (20) которые имеет силу для любой теории с дополнительными параметрами. Другими словами, нарушаются не собственно неравенства Белла как таковые (не существует способа получить значение модуля, превышающее 2), а имеется два класса этих неравенств: локальные и квантово-механические. Они, понятное дело, имеют разные "планки", выше которых не поднимаются значения выражений S. Видимо, разумнее говорить о нарушении неравенств в другом смысле. Значение S для локальных теорий не превышает 2, а для квантовой механики – превышает.

          Все последующие эксперименты, направленные на проверку неравенств Белла, в сущности, преследовали одну цель: показать, что в реальных экспериментах неравенства Белла имеют верхнюю границу, соответствующую выражению (22). Другими словами, неравенства Белла (для локальных теорий) не нарушаются, а просто не соответствуют реальному положению вещей, а сущность теоремы Белла состоит, в таком случае, в том, что невозможно найти (построить) теорию с дополнительными параметрами, которая была бы способна обеспечить такой же уровень корреляции для всех случаев, что и квантовая теория.

          Добавим, что на основании своих выкладок Аспект делает два примечательных вывода. Он отмечает две гипотезы, которые с неизбежностью приводят к конфликту с квантовой механикой:

          • корреляции на расстоянии могут быть поняты на основе введения дополнительных параметров для разделенных частиц, в духе идеи Эйнштейна о том, что различным частицам отвечает разные физические сущности.

          • величины A(λ, a), B(λ, b) и ρ(λ) отвечают условию локальности, т.е. они не зависят от ориентаций удаленных поляризаторов.

          Вторая гипотеза Аспекта представляет особый интерес. Конфликт с квантовой механикой (и, соответственно, с результатами множества экспериментов) возникает, если события в удалённых системах не зависят друг от друга. Именно события, поскольку вероятности измерений на удалённых поляризаторах однозначно определяются этими величинами. Это очевидное следствие утверждения (гипотезы) Аспекта: если бы вероятности на измерителях зависели от ориентаций удалённых от них поляризаторов, то конфликта с квантовой механикой не было бы. Другими словами, вероятность измерения одной квантовой частицы зависит от измерения другой, удалённой частицы.

В начало                               Продолжение
 

Добавить комментарий Сообщение модератору


Защитный код
Обновить