Путенихин П.В.
05.03.2016 г.

  На главную раздела "Научные работы"




          Парадокс ЭПР


          Однако такой подход в теории вызвал возражения у ряда исследователей, в том числе, у А.Эйнштейна. Эйнштейн и его сотрудники - Подольский и Розен подвергли сомнению полноту квантовой механики. Суть возражения состояла в том, что квантовая механика не полна, волновая функция не позволяет дать полное описание реальности, о чём свидетельствует явление запутанности квантовых частиц. В 1935 году они предложили мысленный эксперимент, из которого, по их мнению, следовало, что для описания физических объектов волновой функции недостаточно. В статье "Можно ли считать, что квантово-механическое описание физической реальности является полным?" они рассмотрели систему двух коррелированных (в состоянии запутанности) частиц. В статье были приведены доказательства, что измерение над одной из связанных частиц позволяет узнать дополнительные параметры второй частицы, что противоречит положениям квантовой механики. Это и означает, что волновая функция не полностью характеризует частицу, что квантовая механика не полна.

          "В полной физической теории существует определенный элемент, соответствующий каждому элементу реальности. Достаточным условием реальности той или иной физической величины является возможность предсказания ее с достоверностью, не нарушая системы. В квантовой механике в случае двух физических величин, описываемых некоммутирующими операторами, знание одной из этих величин делает невозможным знание другой. Тогда, либо 1) описание реальности в квантовой механике с помощью волновой функции является неполным, либо 2) эти две физические величины не могут одновременно обладать реальностью. Рассмотрение проблемы предсказания поведения некоторой системы на основе измерений, выполненных над другой системой, которая предварительно взаимодействовала с рассматриваемой, приводит к результату, что если утверждение "1" неверно, то утверждение "2" также неверно. Таким образом, это приводит к заключению, что описание физической реальности с помощью волновой функции является неполным" [55, с.604].

          Поскольку вероятность нахождения квантовой частицы в каком-либо состоянии одного из своих параметров равна квадрату её волновой функции по этому параметру, у квантовой частицы нет определённого значения этого параметра – они принимают то или другое значение лишь с какой-то вероятностью. И только в процессе измерения, когда волновая функция "схлопывается", значение параметра становится известным точно. По мнению Эйнштейна это плохо совмещается с представлениями о реальности. Он приводит такое определение понятия элемента физической реальности:

          "Элементы физической реальности не могут быть определены при помощи априорных философских рассуждений, они должны быть найдены на основе результатов экспериментов и измерений. Однако для наших целей нет необходимости давать исчерпывающее определение реальности. Мы удовлетворимся следующим критерием, который считаем разумным. Если мы можем, без какого бы то ни было возмущения системы, предсказать с достоверностью (т. е. вероятностью, равной единице) значение некоторой физической величины, то существует элемент физической реальности, соответствующий этой физической величине. Нам кажется, что этот критерий, хотя он далеко не исчерпывает всех возможных способов распознавания физической peaльности, по крайней мере, дает нам один из таких способов, коль скоро выполняются формулированные в нем условия. Этот критерий, рассматриваемый не как необходимое, а только лишь как достаточное условие реальности, находится в согласии как с классическим, так и с квантово-механическим представлением о реальности". [55, с.605].

          Против доводов Эйнштейна выступил Бор. Полемику между Эйнштейном, Подольским и Розеном, с одной стороны, и Бором, с другой, можно рассматривать как спор о физическом смысле волновой функции. Во вступительной статье Фока к одной из публикаций упомянутой работе Эйнштейна говорится:

          "Эйнштейн говорит, что основным понятием теории является понятие состояния, описываемого волновой функцией. Эйнштейн понимает слово "состояние" в том смысле, какой ему обычно приписывается в классической физике, т. е. в смысле чего-то вполне объективного и совершенно независящего от каких бы то ни было сведений о нем. Отсюда и проистекают все парадоксы. Квантовая механика действительно занимается изучением объективных свойств природы в том смысле, что ее законы продиктованы самой природой, а не человеческой фантазией. Но к числу объективных понятий не принадлежит понятие о состоянии в квантовом смысле. В квантовой механике понятие о состоянии сливается с понятием "сведения о состоянии, получаемые в результате определенного максимально-точного опыта". В ней волновая функция описывает не состояние в обыкновенном смысле, а скорее эти "сведения о состоянии". Эйнштейн показывает, что, не трогая системы, можно придать ее волновой функции тот или иной вид. Если считать вместе с Эйнштейном, что волновая функция описывает объективное состояние, то, конечно, его результат будет иметь характер парадокса. Ведь невозможно себе представить, чтобы объективное состояние системы (что бы мы под этим ни подразумевали) менялось в результате каких бы то ни было операций, произведенных не над ней, а над другой системой, которая с ней вовсе не взаимодействует. Но хотя в результате таких операций не может меняться "объективное состояние" системы, зато могут меняться "сведения о состоянии", т. е. состояние в квантовом смысле.

          Поэтому все парадоксы исчезают, коль скоро мы откажемся от проводимого Эйнштейном неверного "объективного" толкования волновой функции и примем правильное ее толкование, т. е. будем считать, что она описывает "состояние в квантовом смысле" или "сведения о состоянии, получаемые в результате определенного максимально-точного опыта" [50 с.437].

          Нильс Бор опубликовал статью, в которой подробно рассмотрел аргументы Эйнштейна, используя понятие дополнительности, состоящее во взаимном исключении всяких двух экспериментальных манипуляций, которые позволили бы дать однозначное определение двух взаимно-дополнительных физических величин. Бор отметил, что: «в области квантовых явлений невозможен точный учет обратного действия объекта на измерительные приборы, т. е. учет переноса количества движения в случае измерения положения и учет смещения в случае измерения количества движения. В связи с этим никакие сравнения и аналогии между квантовой механикой и обыкновенной статистической механикой никогда не смогут передать сути дела, - как бы не были полезны такие аналогии для формального изложения теории. Ведь в каждой постановке опыта, пригодной для изучения собственно квантовых явлений, мы сталкиваемся не только с незнанием значений некоторых физических величин, но и с невозможностью дать этим величинам однозначное определение». [50, с.452]

          Он приходит к выводу, что:
          "формулировка вышеупомянутого критерия физической реальности, предложенного Эйнштейном, Подольским и Розеном, содержит двусмысленность в выражении "без какого бы то ни было возмущения системы". Разумеется, в случае, подобном только что рассмотренному, нет речи о том, чтобы в течение последнего критического этапa процесса измерения изучаемая система подвергалась какому-либо механическому возмущению. Но и на этом этапе речь идет по существу о возмущении в смысле влияния на самые условия, определяющие возможные типы предсказаний будущего поведения системы. Так как эти условия составляют существенный элемент описания всякого явления, к которому можно применять термин "физическая реальность", то мы видим, что аргументация упомянутых авторов не оправдывает их заключения о том, что квантовомеханическое описание существенно неполно. Напротив того, как вытекает из наших предыдущих рассуждений, это описание может быть характеризовано как разумное использование всех возможностей однозначного толкования измерений, совместимого с характерным для квантовых явлений конечным и не поддающимся учету взаимодействием между объектом и измерительными приборами". [50, с.453]

          Помимо обратного влияния измерительного прибора на объект измерения, Бор отмечает необходимость учитывать влияние объектов измерения и на часовые механизмы:

          Кроме уже рассмотренного выше переноса количества движения между объектом и телами, определяющими пространственную систему отсчета, нам придется теперь при изучении такого рода установок исследовать возможный обмен энергией между объектом и этими "часовыми" механизмами.

          Существенный пункт в рассуждениях, относящихся к измерениям времени в квантовой механике, вполне аналогичен тому аргументу, который относится к измерениям положения. ... Действительно, возможность контролировать передаваемую часам энергию, не нарушая действия их как указателей времени, принципиально исключена [50, с.455].

          Вместе с тем доводы Фока и Бора в целом можно отнести к теоретико-логическим, описательным. Несмотря на логичность и стройность, доводы, тем не менее, не обладали достаточной математической строгостью, формальностью. Вследствие этого продолжались попытки построения теорий, которые должны были объяснить поведение запутанных частиц путём расширения аппарата квантовой механики, включения в него понятий "скрытые переменные" или "дополнительные параметры". И только с появлением работы Белла был практически окончательно решён вопрос об ошибочности доводов Эйнштейна и неспособности теорий с "дополнительными параметрами" разрешить ЭПР-парадокс.

В начало                               Продолжение
 

Добавить комментарий Сообщение модератору


Защитный код
Обновить