Путенихин П.В.
05.03.2016 г.

  На главную раздела "Научные работы"



          Вероятностная интерпретация квантовой механики


          Одним из основных понятий квантовой физики является волновая функция. Часто её отождествляют с похожим понятием – вектором состояния:

          "Волновая функция (амплитуда вероятности, вектор состояния), в квантовой механике основная величина, описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих её физических величин. Квадрат модуля волновой функции равен вероятности данного состояния, поэтому волновую функцию называют также амплитудой вероятности". [16]

          Название [12] - амплитуда вероятности отражает первый общий принцип квантовой механики, который заключается в том, что вероятность того, что частица достигнет точки x, выйдя из источника s, может быть численно представлена квадратом модуля комплексного числа, для записи которого используется сокращенное обозначение <x|s>.

          "Например, вероятность того, что квантовая частица находится в точке с заданными координатами, равна квадрату ее волновой функции, аргументом которой является координата. Соответственно, вероятность того, что частица имеет определенный импульс, равна квадрату волновой функции с импульсом в качестве аргумента. Поэтому у квантовой частицы нет определенной координаты или импульса – они принимают то или другое значение лишь с какой-то вероятностью" [53].

          "Для описания поведения квантовых систем вводится волновая функция (другое название – пси-функция) Ψ(x, y, z, t). Она определяется таким образом, чтобы вероятность dw того, что частица находится в элементе dV была равна:
dw = |Ψ|2dV

          Физический смысл имеет не сама функция Ψ, а квадрат ее модуля |Ψ|2 = ΨΨ* , которым задается интенсивность волн де Бройля (здесь Ψ* - функция, комплексно сопряженная с Ψ). Величина |Ψ|2 имеет смысл плотности вероятности, а сама волновая функция Ψ имеет смысл амплитуды вероятности" [28].


          К классическим определениям квантово-механической волновой функции относится определение, данное Ландау и Лившицем [26]:

          "Основу математического аппарата квантовой механики составляет утверждение, что описание состояния системы осуществляется заданием определенной (вообще говоря, комплексной) функции координат Ψ(q), причем квадрат модуля этой функции определяет распределение вероятностей значений координат: |Ψ|2dq есть вероятность того, что произведенное над системой измерение обнаружит значения координат в элементе dq конфигурационного пространства. Функция Ψ называется волновой функцией системы".

          Более объемлющим понятием является понятие вектора состояния [14]:

          "Вектор состояния (амплитуда состояния; символ |Ψ> или |>, предложен П. А. М. Дираком) - основное понятие квантовой механики, математический объект, задание которого в определенный момент времени полностью определяет состояние квантовомеханической системы и, при известных взаимодействиях, ее дальнейшую эволюцию... Функция ψ(n) называется волновой функцией в представлении величин n. Квадрат модуля волновой функции |ψ(n)|2, согласно статистической интерпретации квантовой механики, равен вероятности того, что для системы, находящейся в состоянии, описываемом вектором состояния |Ψ>, набор определяющих состояние величин равен n. Таким образом, волновая функция представляет собой амплитуду вероятности. Поскольку задание волновой функции полностью определяет вектор состояния |Ψ> динамической системы, можно вычислить вероятности возможных значений Ki любой другой физической величины K, не входящей в полный набор (n).

          Большое внимание волновой функции и вероятностному подходу в квантовой механике уделил Ричард Фейнман в своих знаменитых лекциях [46, c.11]:

          "Наш первый общий принцип квантовой механики заключается в том, что вероятность того, что частица достигнет точки х, выйдя из источника s, может быть численно представлена квадратом модуля комплексного числа, называемого амплитудой вероятности, в нашем случае — "амплитудой того, что частица из s попадет в x". В квантовой механике нам тоже удалось упростить запись многих вещей, воспользовавшись идеей "вектора состояния". Вектор состояния |ψ|)> ничего общего, конечно, не имеет с геометрическими векторами в трехмерном пространстве: это просто отвлеченный символ, который обозначает физическое состояние, отмечаемое своим "значком" или "названием" ψ. Представление это весьма и весьма полезно, потому что на языке этих символов законы квантовой механики выглядят как алгебраические уравнения". [47, с.200]


          В своих работах Фейнман зачастую сокращает понятие "амплитуда вероятности" до одного слова "амплитуда". О том, что это тождественные понятия, можно косвенно судить по следующим его высказываниям в томе 9 "Лекций":

          "Если у нас имеется волновая функция отдельного фотона, то это — амплитуда того, что он будет обнаружен где-то". [47, с.234]

          "Но нужно помнить одну вещь: амплитуда для электрона быть в данном месте это амплитуда, а не вероятность". [47, с.7]

          "Если для электрона амплитуда того, что он окажется в хn, равна Сn, то вероятность найти его там будет |Сn|2". [47, с.14]


          В берклеевском курсе физики Вихман отмечает внешнее сходство величин амплитуд плотности энергии классической физики и квантово-механических вероятностей:

          "Неправильно интерпретировать сумму квадратов амплитуд Е и В как плотность энергии в пространстве, в котором движется фотон. От этой идеи, принадлежащей классической физике, необходимо отказаться. Вместо этого каждую величину, квадратично зависящую от амплитуды волны, следует интерпретировать как величину, пропорциональную вероятности какого-то процесса. Например, интеграл от суммы квадратов амплитуд E и В по некоторой конечной области пространства не равен энергии, вносимой фотоном в эту область. Он пропорционален вероятности обнаружить в этой области фотон, если мы попытаемся "поймать" его с помощью, например, фотоэлемента. Аналогично, вычисленный в классической теории поток излучения через щель в экране следует интерпретировать в новой теории как величину, пропорциональную вероятности того, что фотон будет обнаружен, если мы поместим непосредственно за щелью фотоэлемент". [13, с.171]

          "Гипотеза де Бройля позволяет все результаты, известные для дифракции и интерференции света, обобщить и на случай обычных (квантовых!) частиц. Амплитуда вероятности при этом играет ту же роль, что и амплитуда электромагнитной волны (в случае света), а плотность вероятности частиц является аналогом интенсивности светового потока" [22].

          "Мы говорили, что амплитуда волны должна быть истолкована в понятиях вероятности. Частицу вероятнее всего обнаружить там, где амплитуда волновой функции велика. Более точно, квадрат модуля волновой функции в данной точке является мерой вероятности обнаружить частицу (например, с помощью "небольшого" прибора) вблизи этой точки". [13, с.217]


          Таким образом, как видим, в обозначениях и формулировках, относящихся к базовым понятиям квантовой механики – волновой функции, амплитуде вероятности, вектору состояния имеются некоторые разночтения и различия. Тем не менее, вполне очевидно, что научная теория – квантовая механика полностью отражает реальность, даёт исчерпывающую информацию о ней. И это не смотря на то, что о параметрах квантовых частиц можно говорить только с вероятностной точки зрения. Впервые точно сформулированная вероятностная интерпретация квантовой механики, волновой функции была предложена в 1926 году Максом Борном. В дальнейшем эти представление были положены в основу так называемой Копенгагенской интерпретации квантовой механики (КИ): "Именно Борн правильно (насколько нам известно) отождествил ψ в уравнении Шредингера с амплитудой вероятности, предположив, что квадрат амплитуды — это не плотность заряда, а всего лишь вероятность (на единицу объема) обнаружить там электрон и что если вы находите электрон в некотором месте, то там окажется и весь его заряд. Вся эта идея принадлежит Максу Борну". [47, с.233]

          "Предполагавшаяся уже ранее в исследованиях по теории излучения и сформулированная точно в борновской теории столкновений гипотеза, что волновая функция определяет вероятность наличия частицы, оказалась частным случаем общей закономерности и естественным следствием основных положений квантовой механики" [18]. "Используя высказанные ранее Эйнштейном идеи о взаимосвязи между световыми волнами и фотонами, согласно которым квадрат амплитуды этих волн в данной точке должен был определять вероятность нахождения в ней фотона, Борн выдвинул интерпретацию |ψ|2 - квадрата модуля шредингеровской волновой функции как плотности вероятности в конфигурационном пространстве". [10, с.236]

          Борн отмечал в своих воспоминаниях, что уже тогда размышления над многомерными векторами этой теории зародили в нем идеи, которые он позднее развил. Они впервые были опубликованы в виде короткой заметки в журнале "Zeitschiift fur Physik", а затем в классической статье; обе работы имеют одинаковое название "К квантовой механике процессов соударения". Содержание этих работ хорошо известно и не требует подробного пересказа. В интерпретации Борна шредингеровская волновая функция характеризует вероятность нахождения частицы в различных точках пространства.

          Именно в первую очередь за них Максу Борну была присуждена Нобелевская премия. [10, с.259]

          "Итак, я хотел бы в виде опыта проследить за следующим представлением: "ведущее поле", задаваемое скалярной функцией ψ от координат всех участвующих частиц и от времени, распространяется в соответствии с дифференциальным уравнением Шрёдингера. Однако перенос импульса и энергии происходит так, как если бы в действительности двигались корпускулы (электроны), Пути этих корпускул определены лишь в той степени, в какой их ограничивают законы сохранения энергии и импульса; в остальном выбор данного пути определяется лишь вероятностью, задаваемой распределением значений функции ψ. Это представление можно было бы обобщить следующим, хотя и несколько парадоксальным образом: движение частиц следует вероятностным законам, но сама вероятность распространяется в соответствии с законом причинности". [9, с.633, 6, 7]

          "Согласно интерпретации, предложенной М.Борном, величина ρψ=|ψ|2 является плотностью вероятности нахождения частицы в данной точке пространства, а, соответственно, величина ρψ=|ψ|2есть вероятность обнаружения частицы в области пространства объёмом dΩ, содержащей данную точку. Величина jψ называется, соответственно, током вероятности. Саму волновую функцию ψ Р.Фейнман предлагает называть амплитудой вероятности, но данный термин не является общепринятым" [25].

          "Квадрат модуля берется по той причине, что сама волновая функция (из-за мнимого коэффициента перед производной по времени в дифференциальном уравнении) комплексна, в то время как величины, допускающие физическую интерпретацию, конечно, должны быть вещественными.

          Мы уже упоминали об интерпретации волновой функции, данной Борном (гл. IV, §7). Пусть собственная функция ψ соответствует некоторому состоянию; тогда есть вероятность, что электрон (рассматриваемый как частица) находится в элементе объема dv.

          Эта интерпретация станет совершенно очевидной, если рассмотреть не собственные квантовые состояния (с дискретными отрицательными значениями энергии), а состояния с положительной энергией, соответствующие гиперболическим орбитам теории Бора" [8, c.173].


          Борн отмечает, что вероятностный подход к волновой функции основывается на идеях Паули и Шредингера: "Такое обобщение волновой механики предложил Паули (1925 г.). Основная идея его теории состоит примерно в следующем. Для простоты рассмотрим свободный электрон. Согласно Шредингеру, его состояние описывается волновой функцией ψ(x, у, z, t), причем |ψ|2 дает вероятность того, что электрон будет обнаружен в рассматриваемой точке. Мы могли бы ввести спин в волновое уравнение, пользуясь представлением о вращающемся электроне". [8, с.217]

          "Следовало найти путь к объединению частиц и волн. Я видел связующее звено в идее вероятности. В нашей статье, написанной втроем, был раздел (гл. III, §2), принадлежащий одному мне (7). В нем фигурировал вектор х с компонентами х1, х2, х3..., на который действуют матричные операторы. Ему не придавалось какого-либо смысла; я думал, что он имеет отношение к распределению вероятности. Но лишь после того, как стала известна шредингеровская работа, я смог показать, что эта догадка была правильной и что вектор х есть непрерывное представление волновой функции ψ, так что |ψ|2 - плотность вероятности в конфигурационном пространстве. Эта гипотеза была подтверждена описанием процессов соударений в терминах рассеяния волн и другими методами". [10, с.16]

В начало                               Продолжение
 

Добавить комментарий Сообщение модератору


Защитный код
Обновить